AD-R172 747 PROCEEDINGS OF THE IDR CINSTITUTE FOR DEFENSE ANALYSES)
NORKSHOP ON FORMA. . (U> INSTITUTE FOR DEFENSE ANALYSES
ALEXANDRIA YA W T MAYFIELD ET AL. NOV 835 IDR-H 135

UNCLASSIFIED DECL IDAH@30379 IDA/HQ-85-30579 9/2

L
HEE
HEE
HEE
]
BN
Hlk




WO N A Ny R TR T Ta B gl Th AT 0Ny RN e, Wty Ay why 50 g dig s @K TR S M NS S (R LA A BRA NALADRISRERLIN. A LN I Ty,

' =2

| 1
? fluzs

FEFEEELR

EFEE

.
N
e

err
r
fr

mg
Il

o

HT’-:'E
i

SR PR PP R IR GNP IR YR . 1% P IS 9y )Y




8] WA

7HE

5, ‘_.1‘;7

A |

L

'l

-8

5 v ¥
2 ats

0T FILE COPY

Al “ew e
oo e

el
[ A

AD-A172 747

'''''''''''
-------
e %e®a .

memﬂﬂw LA A A A A X ity

IDA MEMORANDUM REPORT M-135

PROCEEDINGS OF THE SECOND IDA WORKSHOP ON
FORMAL SPECIFICATION AND VERIFICATION OF Ada*
JULY 23-25, 1985

W. T. Mayfield

S. R. Welke
'~'f'5'¢':‘"'.
N
November 1985 St

| Prepared for
Office of the Under Secretary of Defense for Research and Engineering

M
;‘»tcv?d ’\

™

This document has bcj"’f“f’r" i

for public r2en-@ and e st 1

dict:ivtion fs unliaiica
ietivetion 1 7 o —

[a————

P

l D /4 INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311

Ads* is 2 registered trademark of the U.S. Government (Ada Joint Program Office)
IDA Log No.




DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




'

X LA

N |

F ”.‘IL ': .

[N

XY

‘e 8
.’_l,l

e e ave A
r

-

a8 6 & &

'\"l"p.:

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

A A P2 )

Ia REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT
Public release; distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
M-135

§ MONITORING ORGANIZATION REPORT NUMBER(S)

éb OFFICE SYMBOL
CSED

6a NAME OF PERFORMING ORGANIZATION
Institute for Defense Analyses

7a NAME OF MONITORING ORGANIZATION

6¢ ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St.
Alexandria, VA 22305

To  ADDRESS (City, State, and Zip Code)

a  NA) 8b OFFICE SYMBOL
IORGANIZATION (if applicable)
Ada Joint Program Office AJPO

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
MDA 903 84 C 0031

8¢ ADDRESS (City, State, and Zip Code)

1211 Fern St.,, C107
Arlington, VA 22202

TASK WORR ONIT
ELEMENT NO. {NO. NO. ACCESSION NO.
T-4-263

11  TITLE (Include Security Classification)

Proceedings of the Second IDA Workshop on Formal Specification and Verification of Ada, July 23-25, 1985 (U)

2 PERSONAL AUTHOR(S)
W.T. Mayfield, S.R. Welke

J3a TYPE OF REPORT 136 TIME COVERED

Final FROM TO

14 § PAGE COUNT

346

1985 November

j6 SUPPLEMENTARY NOTATION

17 COSATI CODES

GROUP ] Ada, verification, specification, secure systems, semantic, concurrency, computer
_BELP_T _sn.nm security, software, support library, run-time support library

8 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

also established.

19  ABSTRACT (Continue on reverse if aecessary and idemtify by block mumber)

The Second Workshop identified current issues in Ada Verification and focused on what is needed to build the foundation of an
Ada Verification Techology. IDA workshops will continue to be a meeting place for accessing the current state-of-the-art,
identifying promising research areas, monitoring ongoing verification work, promoting the use of the evolving technology, and
ensuring that valuable outputs from one area are fed into other areas. The desired product of these workshops will be
recommendations to various bodies to coordinate and sponsor certain R&D activities. Working groups on special topics were

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21
CJUNCLASSIFIED/UNLIMITED £3 SAME AS RPT. L3 DTIC USERS

ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL

22 TELEPHONE (Include Area Code| 22¢ OFFICE SYMBOL

DD FORM 1473, 84 MAR

83 APR odition may be used uatil exhausted

SECURITY CLASSIFICATION OF THIS PAGE

All other eoditions are obsolete

',.‘vr".-'_:( o ".:\.-...'.,_:_.q'_‘.- ,_.:__.-\.-\.- T T T A .r\.-\.-. AR LY \.-\.- "N \.-\..\.;_‘..,'. N A
L) A 3 X s N . » 0 .

L P L )

MRt A P A A el R AL Al A Al A Nl S B o b AN



-
‘ I

: s
S IDA MEMORANDUM REPORT M-135 3
N 3
5 ,
" PROCEEDINGS OF THE SECOND IDA WORKSHOP ON
ho FORMAL SPECIFICATION AND VERIFICATION OF Ada* |
& JULY 23-25, 1985 3

W. T. Mayfield
N ~S. R. Welke
g . .?,‘;’:}é?'w

i

v November 1985

N -~
6 IDA
INSTITUTE FOR DEFENSE ANALYSES

- Contract MDA 903 84 C 0031
Task T-4-263

......
» " . - RN I RN



»>

B IR

%3

N
1}:" 'y

YA

.

“a

X

.

LRCAE N

S SR T

Foreword

These Proceedings of the Second Workshop on Formal
Specification and Verification of Ada, held at the Institute
for Defense Analyses (IDA), are composed in part of papers
and slides supplied by the speakers, and in part of summaries
of the talks and discussions edited from notes taken during
the Workshop.

The purpose of this second two-day workshop was to
continue discussions on 1issues raised in the initial work-
shop held in March 1985, to further identify current issues
in Ada verification, and to focus on what is needed to build
the foundations of an Ada Verification Technology.

At the end of the first workshop, several conclusions

were reached. First, there was general agreement that R&D
over the ©past several years has yielded some useful
techniques., Second, the participants determined that these

IDA Workshops would serve as a meeting place where a group of
experts could assess the current state-~-of-the-art, identify
promising research areas, monitor ongoing verification work,
promote the wuse of the evolving technology, and ensure that
valuable outputs from one area were fed 1into other areas.
Lastly, the participants decided that the desired product of
these workshops would be recommendations to various bodies to
coordinate and sponsor certain R&D activities.,

In an attempt to foster results from those attending
these workshops, working groups on special topics were
established. It was envisaged that the groups would prepare
material for the next workshop and, where appropriate, draft
their recommendations to be forwarded to the relevant
official bodies after discussion at that meeting. Working
groups were formed under the topics shown below.

SECURE SYSTEMS chaired by M. Zuk, MITRE Corporation

NEAR TERM VERIFICATION chaired by J. McHugh, Research
Triangle Institute

FORMAL SEMANTICS AND CONCURRENCY chaired by N. Cohen,
SofTech, Inc.

SPECIFICATION LANGUAGES chaired by F. von Henke,
SRI International

VERIFICATION IN LIFE CYCLES chaired by A. Marmor-Squires,
TRW, Defense Systems Group

“

N R N RS I R R B R e o oy U T T A o P S S S T S RN . .
fal el L N G AN AN L G R L G S SO L R S S N Oy

. o m o=

R RI LA

P AT R



P

-

o

-
-
-

LA

»

N 1
: o,
i AN

Jf;.Ajzz L g

S

o " " t... -"l',l.

u.‘,'

PAAL Y

PPN M |

v
¢
4
4
.
P
Ll
.

"OFFICIAL" CLUSTERS chaired by R. Platek, Odyssey Research
Agssociates, Inc.

As the time for convening the second workshop drew
closer, it became apparent that the above topics were really
focal areas rather than actual working groups. Interest in
the different groups was so imbalanced that there seemed a
need to combine some of them. At the same time, it became
apparent that the majority of the prospective participants
wanted to attend all sessions rather than being restricted to
one working group. Thus, Clyde Roby as General Chair, 1in
concert with the working group chairs, revamped the format
for the second workshop to allow plenary sessions for all
presentations and general discussions. By the end of the
second workshop, two new interest groups were formed to
replace the old working groups - SECURE SYSTEMS chaired by
Margie Zuk and Richard Platek, and FORMAL SPECIFICATION AND
SEMANTICS chaired by Norm Cohen and Friedrich von Henke.

The workshop was opened Tuesday aftermoon by Clyde Roby,
who welcomed all the participants and announced the change in
format from separate working groups to plenary sessions. The
program began with introductory talks given by Paul Cohen of
the Ada Joint Program Office (AJPO), John Faust of the Rome
Air Development Center (RADC), and Col. Joseph Greene of the
DoD Computer Security Center (DODCSC).

Paul Cohen stressed the importance that the AJPO places
on the development of Ada verification technology and
confirmed that the AJPO supports the efforts of this group.

John Faust followed with what he thought should be the
goals of these workshops. These goals included establishing
and nurturing an Ada verification peer review group,
identifying the state-of-the-art of verification,
recommending technical directions for Ada verification, and
coordinating Ada verification with other agencies,.

Col. Greene focused on the need for Ada verification to
support computer security, citing the 1lag in achieving
computer security as compared to communications security. He
indicated that President Reagan's National Security Decision
Directive 145 emphasizes the need for computer security R&D
as part of a national program to improve the security posture
of Automated Information Systems. Col. Greene then discussed
the near-term (5 yrs) and longer-term (15 yrs) goals within
DoD to deploy trusted systems and to achieve interoperability
of systems. Placing Ada and Verification 1in perspective,
Col. Greene discussed the importance of both to the DoD
program. Ada is important because it is the chosen 1language
for mission critical software for secure systems.
Verification is important because it will give us additional
assurances as to the trustworthiness of a "trusted” computer
base.

it

Cad ey Tt g

. r
s

.

’
)

Al

2 6"
1, ."r ’5




¢ ,'r

].." S ’.r l\ 'J‘. "

’ ‘: ‘: ."

.

<
.

P

AANE

£

.

anh

R

Cor o R P AN A et tata, . RN LN
X o \'.7-' ~‘1..':.1. .t ,._\.. RARERN LK S q.'~.‘ ."... LR ...‘:._'-\ ", '\Q'..'- ~c‘..t...- Y

The technical program began with Ann Marmor-Squires
presenting the charter of her working group and the key
issues concerning the role of verification in the “Life
Cycle.” These 1issues 1included defining the 1life cycle,
determining the cost of performing verification, identifying
the role of automated tools, and establishing how to begin
integrating verification into the life cycle.

Ann was followed by Karl Nyberg. Karl, standing in for
John McHugh, presented the focus of the Near Term working
group. This focus was on the adaptation of ~“existing
languages, tools, and methods to provide for formal
specification and verification of Ada. Issues 1included the
potential for language changes in 1988, and the need for Ada
formal semantics before Ada verification systems can be
built. There was an additional speaker from this group. Tom
Kraly, of IBM, spoke informally on the "Clean Room" approach,
which is based on the work of Harlan Mills. In this
approach, semi-formal, manual methods are wused during the
development process to avoid the introduction of errors from
the beginning.

The next speaker, Friedrich von Henke, discussed the
role of specification languages in verification. He
presented the charter of his working group and highlighted
topics which must be addressed. These topics included how to
specify concurrency and real-time properties, possibilities
for an Ada Specification Language, and the requirements on a
specification language. Norm Cohen completed the Tuesday
afternoon session with a proposal for a “conservative"”
implementation of Ada as a way to simplify Ada semantics.

The Wednesday morning session began with David Luckham's
proposal for Ada formal semantics that included the <concept
of two semantics; one, an "instrumented” compiler (capable of
explaining what it is doing when queried by a user) and the
other, an axiomatic proof system. This stimulating proposal
evoked a lengthy discussion,.

David was followed by Kurt Hansen of Dansk Datamatik
Center who was 1invited to speak by the Formal Semantics

Working Group. Kurt presented the European project to
develop a formal definition of Ada and provided drafts of
several documents on the project to the workshop
participants. Copies of most of the documents can be found

Appendix B, Certain papers were not available for release,
reproduction, and inclusion herein.

The morning session was completed by Norm Cohen, who
presented a notation that 1is a variation on Dijkstra's
notation and has particular advantages for Ada proof rules.

.,
-

ANy '-..\..'. -';\ '.\{‘-.-\‘.-';'.‘ .‘:-:‘;.., A :

5\

A

Yo

BNV R

. ¢ .
¢

AAR| 58

’"‘-’ .f P 'y




FLRO

< LA

PRl

iros 1
Ehi M 3 O 2P

LA

Pt s e

SR A AL

PUAPATATAM }

L2 i

“a’a 4

Y
-'\(-/

¥

- qa

Margie Zuk kicked off the Wednesday afternoon session by
presenting both the areas of concern and the goals of the

Secure Systems working group. The features of the Ada
Language that create concern about the design of secure
systems include language constructs, run-time support

libraries, and the issue of compiler wunpredictability. The
goals include better delineation of the features of Ada which

introduce security concerns, study of the “conservative"”
compiler introduced by Norm Cohen, and determination of the
language restrictions necessary for secure systems, Margie

invited two additional speakers to discuss Ada Run-time
Support Libraries. Juern Jurgens from Softech and Omar Ahmed
from Verdix each outlined the key features of their
companies' run-time support libraries.

The final day consisted of summaries by working group
chairs and recommendations for actions to be taken in the

area of formal verification of Ada. These recommendations
included:

a. Developing several formal semantics for Ada

“

b. Developing a "conservative” compiler and an
"instrumented” compiler

c. Experimenting with specifying programs in ANNA

d. Performing basic research in specifying concurrency,
real-time behavior, and floating point arithmetic

e. Developing "Ada oriented” requirements, designs, and
specification languages

f. Determining restrictions on Ada so that it can be
used for security

g. Studying the security issues of Ada Run-Time Support
Libraries (RSLs)

h. Identifying and tracking ongoing efforts in secure
Ada systems
John McHugh proposed four near~term efforts. These
were:
a. Prototype development
b. Investigation of semi-formal methods

c. Identification of Ada-specific verification problems

d. Identification of constraints on run-time support
and code generation

iv

..........

T I

'.';’\'.\¢~‘""-" Y \'$ ALY

".;" St P N Gk I T, St A AL

s Mk

a
»

Kh

A

on
L 4

e s
PN

| %

P
r\{o .

]
)

1]
+

: R | IO

" N

.“'-

0



a
]

ey B -

. l"',

1

'—. .r. .1

ACKNOWLEDGMENT

The Institute for Defense Analyses would like to thank all the
Working Group Chairs and, in particular, Richard Platek and his staff
at Odyssey Research Associates, Inc., for their assistance in the
preparation of these proceedings.

.
S

e
NS

s
LA AN
e

’

2
L N P . ¢
.
o

'v'v‘r: 3
AT

AAINA

R
P

"AGD




L e e Ay S TR TRTRTEN NN Eofied Al Bk aafu el At et i ket At Bul kel At ) ot gt et s ol oia” et in bl pliualial o0

a
-

(O Y
2t

||
N
\.-‘u ‘,

. TABLE OF CONTENTS %
Page ;:j

'
\ Foreward ® 0 8 & 0 & 0 O 0 6 6 P S O OO E OGS O OO O 0N s eSS e e 1 ‘-ﬁv
. o

“‘.' Acknowledgment..l..'........I.’...ll....‘............'...... Vl ‘.ﬂ-%
x“: \..r‘.
M Terms and AbbreviationsS.eeeseeeceseessscsscsscncncssssssnssas 11X ‘;,
[ AWK %o

$ 1 Tuesday Afternoon SeSSiOﬂ ® @ 6 6 0 8 & © 0 % 00 0 0O 00O SO PO e L O RS 1 '_'.n_
S -
1.1 Introductory Talks ® 0 5 ¢ 8 0 6 8 6 0 0 0 0 0 0 0 0000 00 G E e e e MO e e 1 “:~:'

;i 1.2 Why the DoD Computer Security Center (DODCSC) is ;ff

Interested in Ada o

- Col. Joseph Greene, DODCSC DR I R N R A S R A R R A A R 2 :‘.‘-
- 1.3 Verification and the Software Life Cycle e
- Ann Marmor-SquireS, TRW ® 0 s 0000000000000 00000 15 -_:':
i; 1.4 Near Term Solutions to Ada Verification -l
- Karl NybErg, Verdix Corp. L R N R A I I I B R N Y SR I 17 -\_-‘
A
e l.4.1 The IBM Clean Room Project e
N - Tom Kl‘aly, IBb'i ® ¢ 00 0 00 0060008000008 08000 0000 17 :"-.:_“;
i 1.5 Ada Specification Languages e
~ - Friedrich von }Ienke, SRI ® 8 05 0000060000000 0000000 19 A
o 1.6 Simplifying Ada Semantics by Restricting t¥j
- Implementers' Options L
- Norman Cohen, Softech «.eceeeerctsceccscsosecocsse 22 RS
" s,
'-', 2 WedQESday Morning SESSion 00 0008000000000 000000t 0 0 :_’-:
o
, 2.1 A Proposal for Ada Formal Semantics %??
.::‘ - David Luckham, Stanford 060 00 00 0000060000t 34 :.'-.:
2.2 European Work on Ada Formal Semantics s
- Kurt Hansen, Dansk Datamatik Center (DDC) csecvas 36 -
3 Wednesday Afternoon 5e8810M .scesesovscsssccccsssosnsessosnscs ;f,
- 3.1 A Notation for Ada Proof Rules Sﬁ;
- - Norman Cohen, Softech .eesveceoncccoscssacsosssas 55 i
= 3.2 Secure Systems Working Group
.‘: - Margie Zuk, MITRE L R N R N R R A A S I I S B BN BN B I SR I ) 68
. 3.2.1 The Softech RSL
' - Juern Jurgens, SoftECh R EEEEEREEEE N I 79 =
-~
< o
" e
’ viti v
A <3

............... e et
------

P * . . . « " a e " '\'.‘
Lt e e ST N L .
""" AP RPYRPOATR . a)




L'}

: &
a
]

] TABLE OF CONTENTS (continued) =

> .

v 3.2.2 The Verdix RSL e

- Omar Ahmed, Verdix Corp. o 8 0000 e 00000t 99 .
[ 4 Thursday Morning SesSsion .ec.eseccsscoocssssassosncaassssse 121 e'.
B APPENDIX A: Ada Verification Mailing Information )

APPENDIX B: Documentation from the European Efforts

I\ -
L ] ’n
\ N
A »
M .. 6
X
- [
.' 'D
L 4
¥ - y
‘ ,
- ‘e
- t
_-
o
&
Pd - .
'. ’\
¢ "
3 hl
o "
3
%
+ e
-
- '.'- )
o, 'n‘.
'J
»
1 .-
1] a
. ~
.‘:
o
p vill
Y PR
Y ° )
) -
- (] . . - - a® o LI " . N, . EORARY . At et e . AT . " -
e T e S . - AR AL RN




Nt ACaNE i A SRl SN gt g - ariL ol ML arh ate gl aStl gl g o g g

TERMS AND ABBREVIATIONS
")
.
4
by
ACVC Ada Compiler Validation Critieria
‘ Al1S Automated Information Systems
- AISS Automated Information Systems Security
" AJPO Ada Joint Program Office
. ANSI American National Standards Institute
\i ASOS Army Secure Operating System
“r
CCITT Consultative Committee on International Telephone and
f? Telegraph (Comite Consultatif International Telephonique
S et Telegraphique)
CEC Commission of the European Communities
- CM Configuration Management
& DAC Discretionary Access Control
DBML Database Manipulation Language
DDC Dansk Datamatik Center
DML Data Manipulation Language
DOC Documentation
DoD Department of Defense
b DODCSC DoD Computer Security Center
DTLS Descriptive Top Level Specifications
-i ESPRIT European Strategic Programme for Research and Development
- of Information Technologies
i FD Formal Definition
~ FTLS Formal top Level Specifications
oy GKS Graphics Kernel System
L%
b IDA Institute for Defense Analyses
/0 Input/Output
!l P p
~ LRM Language Reference Manual (ANSI/MIL-STD-1815A)
o MAC Mandatory Access Control
A- MAP Multi-Annual Programme
MIL-STD Military Standard
O MLS Mid-Level Specification
o NSDD National Security Decision Directive
E} OB Orange Book
A
PC Personal Computer
:: PDL Program Design Language
o PHIGS The Progammer's Hierarhical Interactive Graphics Standards
¢ R&D Research & Development
ﬂ RADC Rome Air Development Center
RSL Run-Time Support Library
e
-
. ix
-

FAF S SR S




.

o«

gy

A

Py

.‘.;.

SDI1
SETL
SFD
SIGAda
SMoLCS

TCB
TDB
TNB

VDM

- - « - LR
YA ARENR -
LN

Strategic Defense Initiative

Set Theoretic Language

Static Frame Descriptor

Special Interest Group on Ada (ACM)

Structured Monitored Linear Concurrent Systems

Trusted Computing Base
Trusted Database
Trusted Network Base

Vienna Development Method

!

'y

" ‘v:. nYy ‘.'.\‘ W e e ‘-‘5‘ SRR LRI '.'-‘-'f»'.-_\' ;\‘-\';\‘;’ ‘:‘-':"('.:". PRSI
¢ 3 B . L 4

..

Y

oS,

LIREY
B

.
L

i

"-‘_'-’,'i

a4 0 A _#_v_ 8



+3

=

-
-
&

2

":’c '}“

L]

a’ e
*
F AN

_J
=

O S I N RN ROy

1 TUESDAY AFTERNOON SESSION

l.1 Introductory Talks

The Workshop began with several short introductory talks.
Clyde Roby of the Institute for Defense Analyses (IDA) opened
the Workshop, and announced that a decision had been made to
change the Workshop's format. Originally, the six working
groups formed at the end of the first workshop were going to
meet in parallel sessions. However, once the working group
chairs got together, they decided to have their groups meet
serially so that everyone could attend every groups's talks.
Mr. Roby also also announced that an account (ADA-INFORMATION,
password Ada) had been created at USC-ECLB to serve as a clearing-
house for Ada-related activities.

Next, Paul Cohen of the Ada Joint Program Office (AJPO)
briefly described the AJPO. The five principal thrusts of the
AJPO are shown below:

a. Standards

b. Education and Training

c., Validation

d. Environments

e. Trusted Software and Verification

All of these efforts are heavily sponsored at the AJPO. Mr,
Cohen also mentioned that he is excited to see so much interest
in Ada verification because so little has been done in the area.
The next speaker was John Faust of the Rome Air Development
Center (RADC). He listed several goals of IDA's Ada verification
effort:

a. To establish an Ada verification peer review group

b. To identify the state of the art in Ada verification

C. To recommend technical directions for Ada verification

d. To coordinate Ada verification with other agencies (e.g.,
the AJPO and STARS Program Office)

The IDA effort should highlight computer security concerns, but
should not be limited to security. The effort should also
include the verification of properties other than access
control. Verification of both design ("Al" verification) and
code ("beyond Al" verification) should be addressed.

L
o

A s T e T s e T T O

AT Cole N

.
A}

o " .."\-'~ . .‘\

Y A
s Bl o

4

1 ]
o N I 2

s

(ANINMY

<,

I3
'-—

RRRTRRR|

_\I'.‘f o 0

<, /.:";' .
'.‘ ‘

v . .
S
o8 v,

KA
'n"J{" k)

“v

v 7 e f 0 _*_ o
' XY ‘.l"
%3

f'QI.I‘ .

YO

/’

Ty ¥
LIRS
o - -

»



N A

»
a s

Lo U0 g v o

A

M

-

LAY

+ SIS

1.2 Why the DoD Computer Center (DODCSC) is Interested in Ada
- Col. Joseph Greene, DODCSC

Telecommunications security and Automated Information Systems
Security (AISS) are converging. However, the two have different levels
of maturity. In telecommunications security, we have the new
technology:; it is primarily a matter of getting it distributed. AISS
technology is about 10-15 years behind telecommunications security, so
there is a need for research and development.

This convergence is recognized in the President's National
Security Decision Directive 145 (NSDD-145). 1In response to NSDD-145,
the DoD has formulated 5- and l4-year goals for AIS. The 1l5-year goal
is to establish interoperability within the DoD. The 5-year, mid-term
goal is to deploy trustable automated information systems using Common
Ada Program Support Environment (APSE) Interface Sets (CAIS's). To
accomplish the way industry designs and builds word processors, PCs,
minicomputers, mainframes, database management systems, local area
networks and network components, and multimedia systems. There is a 15-
year commitment to create a new technology base and distribute it to
industry.

The DoD Trusted Computer System Evaluation Criteria (CSC-STD-001-
83; a.k.a. the "Orange Book") defines certain fundamental requirements
for AISS. These requirements include (at various levels of trustedness)
a security policy, accountability (auditing), certain assurance methods,
and requirements for trusted configuration management (CM) and trusted
distribution. The C Division of systems primarily addresses
discretionary access control (DAC). Systems in the C Division are
subject to so-called "Trojan Horse" attacks. Higher divisions (B and 3)
address mandatory access control (MAC) which involves controlling access
to data labelled with National Security classifications. 1In these
higher Divisions, the Trojan Horse threat is countered by more rigorous
assurance methods (including formal verification for A Division) and
rigid configuration control.

There is a trade-off in near-term funding between formal
verification and CM technology. The technology base for formal
verification is at present very thin.

Ada comes in because it will be used for mission-critical software

in security systems. It is also an avenue to distribute trusted system

technology to the computer industry. The DODCSC supports the following
policy:

a. Use and support Ada standards.
b. Monitor and incorporate emerging standards.

c. Code entirely in machine-independent Ada.

d. Use Ada syntax and semantics to the maximum extent possible for
Descriptive Top Level Specifications (DTLS), Formal Top Level
Specifications (FTLS), and verification methodologies.

)




<
.::,
Y
i V¢
%
,",'. e. Require designs to be full, compilable and executable Ada. =¥
- ‘ i
f. Minimize text in documentation. ﬂ
! g. Validate Ada compilers for all machines used. D,
o Experience has shown that Ada provides significant savings in lines of E‘- s
,;“h code and cost. r:‘_‘
~
The Ada Security Task Force has been merged with the IDA effort. e
This Workshop is being used by the DODCSC as a forum to formulate issues o ¢
:-', and track resources which can be used to resolve those issues. ;,' i
w d
The slides for Col. Greene's presentation follow this page. f:k
& )
& 4
- %
h..v \--
.
. N
h" -

%

o
s

- »
:\’. ;.: ¥

\- 1) v

P ]
4 o~y

A

7l

o8B

-i- -.'

S-r Ty Y e
Ly

~
[ 4
2o

~R

S
a & o 8 ¢
'.. ..ﬂr..*.“ﬁ-:n.:' .

-~
Y
oy

-

.

v

)
}"’.

Lo SR sl A
»
-+

. O A
- X

v
B A

AR AU vy
'v’ '.”',.l,.l' ’ - ~'~ '“lf.

w
AP
’r.r

LA IR N AT S SR BRI, e o NP 0% 0 A 0 SO AU O U ek N SN N P/ ‘.-.‘,q".‘.-




TVIOO0S e
JQINONODO3 e

TVOINHO3L o
SH3AIHd

- |
ALIHNO3S SWILSAS ALIHND3S

F;

NOILVWHOANI QILYWOLNY ,@

JONIOHUIANOD




STy ° r T ,1-1
....vmﬁ;npwwxi.»\..\..hu-m......‘...nw. :

.
A - “i ‘..
oo NN

A

oA eT T et
PR N PN S
0_.\_.\'.

diHSH3aVv31 379VINNODIV '3TONIS S3HSITgVv.iSI e
SIILIAILOV JAILD3HYOD S103HId e

ADOTONHO3L 318VHINTNA V

NO AL31D0S 3HILINT 40 IONVAN3d3d Ol SONOdS3d e

AL1HND3S TVNOILVYN Ol 1V3IHHL -
S3LITNGVHINTINA LNIHIHNI -
SIDAITMONMNIV e

JONIDHIANOD SSIV ANV DISKWOD S3ZINDOD3YH e

(v 43S ‘S¥i QUSN)
JALLOFYIQ S.AN3AISIYd FHL

ri LY VL VYL YW IR VLV

rev sk * a3 . - e v, ? R ", ) s
i ¥ ,\h '«\\. A .f\m ‘h_.nﬂv- N -\nv-“ .-n TR u& . .J.‘M ) ‘wn ﬂ. \ lv.‘-r.- ........\ ..---s .-rs. . .......J. q- -l!'w‘ ' . .v —-uu\ o\ u‘i --.-. --




T ey

e ' M 250 Ate A

A A gbie 2 ke A e o Al AMC 4w ke A Ale Slee o Bfe. iRt ie-f

PainA s it &t L A Bt Ao B St B B Tt B Tl Saui N d

A s et

St
LI
T .

1

‘. \.--

L% % |
[ i)

. . -
. % PR e v, e, . . e, L Oy e 'y L . .. .

ADOTONHO3L M3N LVHL 31NgI41SIa e
3svd ADOTONHO3L M3N V 31V3HO e

VIA3INWILTINN -
SLNINOdWOD XHOMLIN
SHHOMLIN V3HV 1VOO01
SWILSAS LNJWIODVNVW 3svd vivd
SHIINdWOD JAWVHINIVN
SH3LNdWOD-INIW

S.0d -

SHOSS3O0Hd AHOM -

Sa’ing adNVv SNOIs3d
AHLSNANI AVM FHL 3D9NVHD AT3137dNOJ @

1SN

FON3ITIVHO




. . . N ]

DENARNN | -‘\%A“-NL- k— Pty NOERNTNINTY RO LY (PP . 4 w4 RACACA) x g - g s, ¢ -
an s, vl - a bt DA . AP A I PR XN XA 8,0, % N e e, h A AN, R
DARANANE | IARFAAAY | Soitiinityt SUSDEDEPE e RN NN RNNRR  [ShAFiry s (NASAN ol

[SEPEE N )

ALINgVH3IdOH3LNI e

39IAH3S FILNVHVYND -
SS3IDIV TOHLINOD -
ONIGY3IH TOHLNOD -

ALIHNO3S e 3

\ W

SIN3IW3IHIND3Y TVH3INIO -

** " 3NIL LHDIY JHL 1V
" 30V1d LHDIH 3HL 1V
" " NOILVIWHO4NI 1HDOIY

STVOD NILSAS NOLLYNHOLNI G3LVHOLNY

e ey oy T g e RA SR ) i ol oo Bl




SIW3LSAS 801 40 LINJWAO1d43A -

| SIV 34N23S -
‘JAILD3rd0 WH3IL-AIN HVIA-G e

ALI1I8Vd3d0Od31NI -
VOO HVIA-SIL e

3ONVaAIND ISNI43a

. g . - e . e egmE. . . 4 . s s, emmam . . ey oam L, . ommn ., e, . . .
PRI | AR SRS L AT TR S s L X LT A T R L L AR



NOILD3LOYd
SNONNILNOD 94

S1N3IN3HINO3Y
ALIYNO3S (¥4 - LY 40)
TVANINVANNd LN3NIOUONT - SH
40 LN3N3LVLS ININdOTIAIA JONYVHNSSY
INIOIZ4NS iNos LanY - vi

aNyY ULOVHd OL

aaonNaay al - £

AHVSS3OIN V
S3GIAOYd 80 14VHa ALIIGVLNNODDV
Noilu3ssv | AMVMIRMIud ONIIUVN - T

A2110d
ALINND3S - 1Y
AJN0d
“quol-aNL | ceei-g01 ]  siNamauinoaw
Vid3Llido SN

B L LS LN 4 ~e" A A N - . ,
PP 'b e 'A.\-.-. .-...‘ PAT I ~-\.z [N ", ..\.\u .. et P .-:) e s .
- o - 0. Ve R NS L, DO RN NN e .-'




R AN AL A NS i s M B6e e Rt 2

a4

S SR P

200 s
NOLLVUL3IN3d- _ NIVROQ
TVNOILONNS- a315310ud
ONILS3L ¥ FSNTY AYONIN € _ @oL ¥
VR 180 OL 8Ns
~TYNINON.. € 40 IV €

rdo ®© ans
CREL LA
ALIAILISNIS |

AJM0d DYN
TYINUOINI T

3

NOILO3L10Yd
SNONNILNOD 94

(¥4 - LY 40O)
AN3IN3IJHOIN3 - SY

JONVHUNSSY
1anyv - ¥

ai - €Y
ALINGVLINNODDYV

ONDIUVYN - Y

AdNOd
ALIHNO3S - 1Y

Ad1N0d
SIN3IN3YINO3Y

10




JONINOD
500 a3aav ¥ 090G 8 | NOILVUNDIINOD ¥

— TOULNOD
NOlLNGIHLSIO-

AM3IAITAA | NIVYIROQ J3X3 801~
aaisnulL ¢ HiVd G318SNYL €

TJOULNOD NO SALIMOVL TINNVHO NOLLO3LOY¥d
ONOULS € AHIAO0D § SNONNILNOD 94

NOLLYJIJIH3A JVR (o4 - LY 40)
TYRHO4 T «1V3H. T ANINIDYOINI - SH
JONVHNSSY

1any - v

al - €y
ALIMIGVYLNNOJDY

ONI -
——— NIV - 2Y
ALIIND3S AJ110d
TVNYO4 | ALI¥ND3S - 1Y
ca AJI0d

SININIYINOIY
VIH3L1IHO SN




2l TN DIPTSR RS BT TERCCUN SRS I . ORIt

B T I AT S N
R

TYALXEL NYHL
HUIHLYY PV FIEVINIIAX3 ‘TISVEINOD “TiNd SV NOLLVIMO-NI NDISaa -

NOLLVAN3NNOOQ DNLLHOJdNS - :

| Maa “Ina - o

(AM3NO 311 FOVILILNI INIHOVN-NVI O 3OVHILNI) IDVNONV GNVINNOD -
(4143A ‘S11d ‘S110) SNOLLJINOS3A DNILUOJANS -

F18ISS0d LNILX3 XV O1 SOLLNVIIS ¥ XV.LNAS ®PY 38N -

12

PV LNIGNIJION - INHOVIN NI 300D TIV ©
SQUVANYLS ONIDUING 3LVHOJUOONI ¥ HOLINOW o i

SGQUVANVYLS LHOddNS ¥ 3SN ¢

AJI10d epV E

AR LS e e S b P L 0,0 st e v ] AT RANAAS ORRATULEY OOPODOLY ' WYY EREY. N St S oy o



s A o v, OO e N W SROND
" (n.....\.. ...s..\... ORI RER]  PAPEEROENIN v 4 LN CARR! (9 o
: B - . ‘ T N .

U

XN AR « . P R PR e KA IAR 4 1Tatals

......... .~.-4-... . -- o -....-.. - .--.q ¥ st Peiv £ .-..u.qq.\-'a-}uslc\h. g -d. \-”\
.-..‘.

o

3

s

RS

MY

o _..“;.' <« ;-c:..

HITNAROD *PY Q3ALVYAINVA LNOHLIM SINIHOVRN ON o

ONIUVHS 31V1ITdVd -

PRI

o _..._\..

$7001 40 ISN IZINIXVYN -

(141D ‘SOIHd ‘SYD) TTGVHIISNYYL JINOYLITF VIGIN-1LINN -
FI1GVHIASNYYL JINOHLIOITI SAIANLS -

F1EVHISSNVYL JINOHLOITI TV - 2

13
*

NOILYLININNDO0A HISN TYNHIALXS 3ONA3Y OL SdT3H ANY S1dNOYd 3SN -

STIAVYLNIINI 3LVYITdNA SANINNOD ON -

TYNY3LNI - :

NOLLVANINNO0A TVNLXIL IZINININ -

: (Q.LNOD) ®PV LNIGNIJIANI - INTHOVI NI 300D TIV ® ,

.L.. (Q.LNO9D) ADI10d BPV




\!. . - hd - B -
v) B 'y ,,» .o® .
* l& h‘ : -“ v Y & } ‘
vea .f\lv. - \-- - L R 2 ‘ - ~ . - . ” . 4
L ’ L a4 s L . d ,
L - ,.q s -a “ate

AULSNONL
HILNAWNOD |

JOVH3IAI

A, o Ly = - - .. .
A e Va2 e eapios LSRN FRCORAAL | AP AN AN " Rl WYY I i
e "o g v - fd bl Ed

e




. -
) 1.3 Verification and the Software Life Cycle A
~ - Ann Marmor-Squires, TRW o
£y
w3
Charter of the Working Group on the Role of

! Verification in the Life Cycle -
. a. Determine the appropriate role(s) for specification -
E§ and verification technology in the software ﬁ
development life cycle for Ada mission-critical }ﬁ

systems development. -
ey

Ea b. Describe the relationships between verification ::
technology and other analysis techniques used in N

o the life cycle. “~
.."F‘ .o\
o e

=~ C. Determine the automated support tools needed for the z
. successful application of the technology in its ~
-t proposed role(s). 7
d. Recommend means of incorporating verification C?

%% technology into the life cycle in an effective manner. ;y
e. Recommend near-term projects to be funded. =

}" ;,.-\
Eﬁ f. Coordinate efforts with the other working groups. Q:
<

) Verification should be viewed in a broader sense as one part 3
ii of a whole complex of methods, languages and tools used in the =
- software life cycle. It is important that verification be merged 3
with other methods to give better confidence in the resulting I
i system. ﬁ'
B .
‘..‘\' \*
The following issues are important to determining the role ~3)

' of verification in the life cycle: o
; s
- a. Definition of specification and verification technology. N
What exactly do we mean by formal specification and >
x- verification? What languages, methods and tools are }3
.t involved? s
Ky

o b. Relationship of verification to METHODMAN. ",
W, '_:1
- C. Is there only one 1life cycle? What are appropriate :;
- standards for the life cycle(s)? Ny
w d. How will verification be used in the specific application? ;
What properties does one want to verify about the —

o application? What other analysis techniques will be used in .
N addition to verification? -
9

»
ﬁi e. How much will it cost to do formal verification? ?:f
i

o s
-, W
ot -

l! 15

L

v l‘ .n l"




‘B AR She Al A At el e B Ae A (AL S SR A S M A A2 S SN A A i i SN S i gt it fef R o |

N
W
|
ﬁ f. Generic vs. specific methodology and support tools. 5
0 Verification will play a different role in the life cycle B
depending upon whether the technology being used is specific vr
d to the application (e.g., formal information flow tools for
security) or generic (e.g., a verification condition ]
.g generator). N
X g How do we get started on integrating verification into o
Q the life cycle? What funding is available for near-term -
: projects? o
P Configuration management (CM) is particularly important. f:
. Both the verified system and the tools used to verify it evolve. As -
i the system evolves, it may need to be re-~verified. The evolution
< of the verification tools must be managed so that new o
o verification technology can be incorporated without making v
re-verification more difficult (e.g., by incorporating a new
I verification paradigm which is inapplicable to the <
- system into the tools). T
i The question of the wuse of Ada in the development of the g
Strategic Defense Initiative (SDI) was discussed. Some members of R
- the audience felt that the group present at the Workshop should think ‘i
N about the implications of using Ada in SDI, while others felt that
f; the group already has more than enough to think about. No official =
- decision was made on the matter. -
>
- )
- w
v,
> "
X s
l\.
. o
. 8
-
L .$
s .
y b2
]
‘ .
53

el A
Kl
[

16 !

\ ...n v'v (S YANE . ': \‘..:‘.‘;(-. :.-

v s s e
R )

=g gt 4y %

< ‘;q' ’ .:h" ‘-’ ;" _:l '.!'. K _;.‘ .;f Pt

aL .
-

TN

l. e - T . . N I_. e .-‘ - ." -.‘ ‘. T ." =
AN NN R R AL A AL




D l1.4 Near Term Solutions to Ada Verification
i - Karl Nyberg, Verdix Corp.

The focus of this Working Group is on adapting existing
languages, tools and methods for formal specification and
verification to verifying Ada. Examples of existing technology

p‘ include SPECIAL/HDM and Gypsy. There is, however, no fielded

i software which has been formally verified. Al systems have been
developed using existing technology, but have not been used

. extensively.

¢

One problem with developing near-term Ada verification
L’ systenms 1is that the language may change in 1988. It is not clear
what the extent of this change will be, so any Ada verification
system developed before then may become obsolete due to language
changes. The question is, should we start from scratch in 1988
- or build Ada verification systems now and try to adapt in 1988?

Several points were raised in answer to this question.
Ny First, by building verification systems now, we can discover some
> of the verification problems connected with Ada. This will also
provide experience with verifying Ada. Even if these early
near—-term systems are thrown away after 1988, the experience
gained will be valuable for building future tools. Second,
attempts to build and use systems will help to uncover some of
the "fuzziness” of ANSI/MIL-STD-1815A Ada Language Reference Manual,
(LRM) which will serve as input to the language change in 1988.
Near-term attempts to define a formal semantics for Ada will also
help to uncover "fuzzy"” Ada features.

-ty

- At this point, the question was raised whether a formal
semantics for Ada must be formulated before Ada verification
systems can be built. The general consensus of opinion was that
- a formal semantics for at least a part of Ada was necessary, but
- a formal semantics covering all of Ada was not. A formal
semantics expressed in terms of axioms and proof rules could be
5 constructed to cover a restricted subset of Ada. These axionms
Iy and rules could then be used to build a verification system,
- l.4.1 The IBM Clean Room Project e
- Tom Kraly, IBM gj&v
to e
N :‘r:‘.\
n. C:.-R
IBM has experimented with applying semi-formal methods
) manually (i.e., with no automated tool support) to improve s
i correctness of software. This project is called the "clean o
- room,"” and is based on the work of Dr. Harlan Mills. The {f}'
traditional approach to software correctness is to design and :12
] implement the software and then to find the bugs and fix them, g:
The IBM clean room project is an attempt to use semi-formal -
: methods during software development so as not to introduce errors DO
P

17

L] - - - K] ] - - e “ N .. ) -I “e ~-
< -'e- a-‘ s .r:.- AN, .._-\ N AT RS

.



2 d

in the first place. The project uses a semi-formal specification
language based on set theory. Informal rules of argument are
used to reason about software. Software is modeled as state
machines.

R E )

-
-~

The clean room project originated in IBM's Federal Systems
Division, but is now used throughout IBM, It has been used with
Program Design Language (PDL) Ada.

JLA

AR

e 40

e

- - .
e

-
-

Z

SOOI

TSy

Pt

N A A4 by

INE

[}
LAY
.

A

s

18 !

-
A O RS AT T T T e AT S S S R S G L S S S I Ny S B Tt L Rt T NPC L S P S IR
VLW \ RSN LA RO NEY \\. T, A S S S LS CR AN DR RSN




gl 0 *ada ata'ater ad . ol PRl d &t R "Og heattea £0' gt Ve a' ' -t o, Api.fia gav ot

1.5 Ada Specification Languages

3@ - Friedrich von Henke, SRI
WG
s
Charter of the Working Group -
! on Specification Languages for Ada R
-,
%3 The purpose of the Working Group is to discuss -
Ada-oriented specification languages, with the goal of Fﬁf
formulating requirements for such languages and making -
qs recommendations for further activities in this area. a7
> e
Specific topics to be addressed include: ;t}
E; a. The role of specifications and specification :2;
languages in the process of producing Ada -
. programs oy
“ i
% ~a

b. The requirements on a specification language (as N
opposed to the programming language or design :
languages) .

c. The state of the art of specifying Ada programs R
}j d. Identification of areas of the Ada language for Si'
. which specification techniques are lacking or N
insufficient RN
l. e. Alternative approaches to the design of L
specification languages for Ada lﬁl
A o
K As a result of the discussion, the Working Group will formulate NS
requirements for Ada~oriented specification 1languages and make ??
recommendations for further research and language design efforts, =
« The activities of the Working Group are to be h
. coordinated with related Working Groups, in particular
ﬁ‘ those addressing the issues of formal semantics of Ada
P and the role of verification in the software life .
cycle. e
?f It is impossible to do formal verification without a formal ;ﬁ5
specification language in which to state what you are proving. &:
s Therefore, to build an Ada verification system we must have an NN
;}? Ada specification language which is adequate to state the kinds )
- of properties we want to prove about Ada programs. "
’1 Specifications can be divided into several areas: ﬁf
Y A
a. Functional: The run-time behavior of the program E:
- '-(\
‘ b. Structural: Static relationships of various modules in a i

program O




J'.’

e B & &

St o

4

AKX

!

Al LA

RGN KA SO0 SCNAL NN

c. Performance: "Hard"” real-time properties
d. Security/Safety properties

An area which must eventually be addressed in an Ada
specification language is how to specify concurrency and
real-time properties. We have little experience in the area of
specifying real-time software. 1In addition, Ada was designed for
embedded systems so the specification language should also

be able to describe properties of the hardware. This is also an
area in which we have little experience.

The current state-of-the-art Ada specification language is
ANNA. ANNA currently lacks facilities to specify properties
related to concurrency. ANNA is a conservative extension of Ada
in that it attempts to use Ada syntax and philosophy as much as
possible. 1Is this the right approach? One can imagine three
possibilities:

a. The ANNA approach - make the specification language look as
much like Ada as possible, and don't depart from Ada in any
significant way.

b, Design a completely different language without attempting
to follow Ada.

c. Middle ground - use Ada syntax and philosophy as guidelines
but not as dogma.

Although ANNA currently falls into the first category, it could
be modified to fall into the third category. The danger in doing
this would be that one would have to modify the semantics while
keeping the same syntax. It would be better to modify both.

An argument in favor of staying as close to Ada as possible
is that this avoids possible incompatibilities between Ada and
its specification language. An argument in favor of not being
bound by Ada is that it may very well turn out that the
properties one wants to prove about a system are not easily
stateable in Ada.

A slightly modified form of ANNA is being used in European work o
on Ada. It would be desirable to have a single standard Ada
specification language (e.g., a standard version of ANNA). This
specification would help support reuseability of verified software >
since tools which process the standard specification language could
be used on code developed elsewhere.

The term "specification language” is somewhat "fuzzy."” It's -
not clear how a specification language differs from a design
language (i.e., Ada PDL). It is especially important to make this N

distinction clear in Ada. Some people believe that Ada is a
specification language. Ada, or an Ada PDL, may be regarded as a

20 !

T N N N L L L L N e e a Y L N L et et
et ot ) FARIEAR YA .\. ERURC v-.\~,‘ ‘.'\.. N e ‘,.,"_-."-. ..




[
Y

] design language, but it is not formal enough to be a ::’,:
&‘\ specification language. Specification languages must have a high }'.'"
’ degree of formality to support proofs., In addition, _
specification languages are supposed to say what the program does k:
' rather than how it is done. Using Ada or an Ada PDL might force x
- the specifier to overspecify the program, and would also make it A
difficult to specify at a high level of abstraction. It would be g
- best if the design language and the specification language were .-:
&Q the same language. o
' o
2NA
a -
S

c; ..'."l"
»

&
r
s

r ' S

Ao y
'l o~
- e
L] " A
) S
>,
. >
i o
\.‘.‘ ‘
LK}
o oy
1-- L-.'.-
~ L)
", e

" (]
Ly

L)
(]

yVH
LA
[ ]

]
L)
v

-
a -
3

‘.l

"’-

.
v r

'l..

D ".u'

\:. “
s
B
o (S
oe Y
e K
o
=
n_-: r::(-
l’ o, :\’
(
e

-
LY

W

N

v
3 L
.

. - e o PP o P L L - et et e S e = A
st nT e faa e, S T S SO T S

N e tem e s
N T .
L SR L S S S WA



XN AN
PR AN,

1.6 Simplifying Ada Semantics by Restricting Implementers'
Options
- Norman Cohen, Softech

Defining a semantics for Ada is difficult because the

LRM leaves many things unspecified (e.g., parameter-passing
mechanisms, when exceptions are raised, what the effects of certain
pragmas are). Norm Cohen presented a proposal for a partial solution
to this problem. His proposal introduced the notion of a
conservative implementation of Ada. A conservative 1implementation
would be an implementation of full Ada, but with many of the
ambiguities of the LRM resolved in a straightforward way. Another
way to say this is that a conservative implementation is an
implementation which uses a more predictable compiler.

It was suggested that the restrictions that define a
conservative implementation might become part of the language
definition in 1988 or 1993,

The slides for Mr. Cohen's presentation follow this page.

22

|

. l.

s
(]

v

o1 |

L
Y

o




“ . ) . . : ;
P g ot o, g5 4, 7 LN N 5 - T . v ¥ 3
PRI TS Attt ....-. xS ...-. LA A LA -.r t -.\r-w(\..\ﬁnﬂ‘.\-\f.. /N ... ... I .«...\..n. .\..\..\. ‘ ,_- -\-\- ’,
A,
!
)
.
)
Ry
v e -
Sl
o
NS
s
KL
o
ey

) -
331440 wedbougd julOp TpY ‘JUIWUIINOG °S°M) Y} SO YJRWaIPRJ) © S| EPY-» m

P

- - .
N
)

.-

87J33EN3HOIN

‘-;,'u v

0888-Lbs (S12)

90061 ¥d ‘Aaiien uopbuyjuny 5
prOYy AJ42Q48 0081 . o

NJed ssauisng ||!W sSuosely SOZ
*auf ‘ydapjo8 X

Uayo) °*H UrwJION 3

T .

..’N"F-.".“

L)

whe

Y

SNOILdD ,SHILNIWIVAWI ONILITYLSIY
A8 SIIINVES *vaV ONIALIVdWIS

te e ) Ay
'g:.,{\:.:‘

-
-,

.. l.~_ \ -
NSO

1Y

AR

-

s

w2 . la LN BT s BV BEROAREE SEERCUNP RIS BNV SERCL AN

s )

[




N1 EEEOONEN DO SRR | A IEEACEEE Y BERCCCIIEY SR

¢l + 0 - ¢922€ Yibua| ay) 0 uoijeyndwod (euusjus Gurunp sdundd0
MO | 34300 31 JOJJI DIJawnN asted ,i(z9sZE *°* 0) BulJd}S t Y, UDIjRUR|IIp Ay} ue)

¢JoJu3 " abeuoyg asiey asne|d ISh e ue)

csanjen (euibiyo viay) uieyau syajaweued
8} 1sodwod JNO pue JN0 UJ ay) op ‘uojjdadsxas ue sajebedoud [[ed aunpedoud ® uaym
COJIT S| ey 321AJAS Uaym uo1}dadxa ue asied

T UAY) 0°T C 'Y 3D1MJIG/IIRY |BAIJUY PUR [=SJ0SSII0JG 40 JIQUNN §1
183} Ay} (1im ¢, ig =t Juelsuod : SJOSS3J0Jd 40 JIQUNN, UOI}RJR[DIIP 3y} uUaNIg
¢l {Jed ade|dawos JO ‘sundd0 g % Y UOISSaJdxad

dY) 343ym juiod Yy ® pasiey aq ! ||IM ‘08 4] JPISI®I aQ JOJJT DIJIUNN ([ IM
‘08 }I ¢éMOI}JId00 g x Y [LIM ‘g pu® U JO saNn{eA 3y} pue adA) aseq ay) uanig

YOINVHIE WYHO0¥d YAV Q3T14133dSHIANN 40 SINdWYX3

RAAS S FARALPAF, TONNR IS R N R R IR VI A &% % P Y



‘pasiey aJge goggulamrgoym pu® JoJJd3 3J1n3Q UIYM

(UDIIEN| BN UO)ISSIIAXIQNS SO JIPJID

($}23449 apis Ou sey uoissaJsdxa Ae|ap
ay} 1ey) Papiaoud) juswajeys [|hu ® ST PDIMILA 3Q ued jJuUIWI}R}S Aeldp Y

*s31}Jadoud paje|ad-«£}1J014d Jo -Guruty anoJd o0} a|qe #aq 3} ,uom -
‘spueunod papJenf se Kem aures ay} Ul S)ieM N1}DI|IS Api1don -

sweuboJd Guiysey 1} |NW Ul WSIUIWII}IPUON

et

-

WS INIWYIL3IONON 40 SKI04 3718Y1d3v .

x S0 1 AR AN B o,

- -.—!‘ > --"

’

v

pOYL
~

. R - . . .
o R T | " | .
h. e : el -J‘.J.. ! s Ay "y \nv\\h.n- {'w .Lw \.L».L ' - R R e ) A - .'

25



my A —-— ——
m A8 v WY S e Aoy ne s e i S ML s Ty ke SR
.mw
‘se|nwJoj 40 yjBua| ayy utl uojyso|dxa {ei1juavodxy
*$UOI1)}IPUDIIId Ul ,SpJed PliM,
*sajnJ jooud pajed)dwo
NOILVII4I¥3N TR0 304 SIININDISNOD .
AR ’ q,\ S oA 8 - 4 PR A A

/ P « s, PP .
% % 'y L N e ..\.\-.-.. «..- . ~.u..,....




M
,.... ..-.--,- \

r

- i e T R jy . . . P . y

f » Y N PR | RO MO AN NN NI LN A o rveyw g Y " rat i)

. \ ,.-\\\\..-! AP S . PRI A e LR - . LA R A A LRI Jt,e % (N A NN RE N Y LK
|-\‘n-l.\”\’nl [ 3 Y.- IR AR S -nv .-. N ..- -- [P S St -;J, 5 n\. . .\.. et .w .t-..-.n-.\-\-\-\.-\. ..- S .-s.. \.- S ,.-.-. .. - ...s..\.\. ' .-.-n. 1 bq\.-\.c“co\..u\c..‘n-”’. ) .-‘--nv.-c.o-....-....‘-t-', n-...-..-. .-..

*ga|1dwod ay) 40 (°Z asea|aJd AQ pajepijenul aq p|nhOD pue ‘uo)jejudwa | du)
s,4a|1dwod ® 40 s)dadse pajuawndopun ‘sjeanisd uo puadap sa|nhy 30044 -~

‘patjrdan
aq ued salduapuadap J4apJuo }daJJ0dul Y3 im swesboud pue sweuboud snoauosuy -

*A}111qe}J0d an0ad },UOMm J314143N -
(*}159U8Q || IM SJaSN ®PY $O JIQUAU ||eWS ® A[UQ) °3N1}I3443-3S0D JON -
322348 §,)INJ3SUOD © 2Q1JISAP A|351284d ued SI|NJ 0044 -

Jai1j1dan juapuadap-uoijrjuadwajdur ue pjing

27

s AemAue 3|qQeliJanun
PaJapiIsuod 3q O) aney Aew (sasne|d ssasppe °6°3) saunyed; EpY UiR3Id]) -

*$}3INJ}SUCI epY |eUIWEpPUN} Huijuawa|dwy u) Ja|idwod
® 0} Uan1b Aemad| 30 junowe ay} S! Ydiym ‘wa|qoJd ay) an|os K||eads j,us’oQ -

nnc_wo y9sqns e 03} Jawwedsboud ayy dutjuo)

SNOILNI0S ALINYI 3WOS

. . o~
AR LRSS CSAY

-

Ly ‘_1' -',"n'_‘.'

W e (.\..

TS Nl




LR i

AR

B

e @ N B NN R A Ssd Il 955 B g s w2 s Ul N |

‘RSJN 3I1A e
JOU NG ‘SuOijejudwa|[dwi ®PY PI BN dJE SUOI}RIUIWA|[dW] AI}RAJISUOD ||V - .

*SUOI}DIJ}SdJ ('UOI}IppPe sn|d ¢ |enue ddUdLIaY "
TPy Y} Ul SUOI}IIJISAJ Y} [T £3QO0 }snw uoljejudwa|du) dnjjenddsuod ¢y - !

‘epy p

40 jasJadns ® Jou ) ISQNS ® JIY)I1aU SHUWI(dw) uoljRIUIWI|du) dAI}BAJISUOD ¢

*suoi1jeziwi}do UIR}JAD N0 SA|NJ Sy} $! udnd ‘s)sabbns 3xa) weuboud
a3y} 30 uoijejaJudyajul SNOIAQO Y} jeYMm OQ :SUOI}IIJISIJ 4O AWAY) (eJaUdY A

28

' *IA1}CAIISUOD X
pajled aq [|Im SjuleIISuOd |euoi}ippe asdy) BuiLaqo uoijejudwa|dur uy .

saJinbau (enuey
3JUdJa3}aY ®PY Y} jeym puokaq ‘uoijejuawd|dw) ue U0 SHUIRJIISUOD [RUOI} IPPY

SNOILIINLSIY NOILVINIWITAWI 40 135S QYWINVLS V -
‘NOILNTIO0S HIHLONV 2

) S iy J. - T S e 4\....\HW~,-.‘-.-.-..M., .4-‘“.‘\.\.\.\.« ,Jntﬁ,nﬁ.\\uﬁ .u-.-.'!._(--(? 2o .”........_ ,.‘-“-fa!o J. _.‘.-JJ vty ' 5.\\\\5} \.tu-. ’l



-

o

- -

| NG| SEEHEE, AN . { SO R

s e e e ] . . O B 1 PP [y

*[/1d #0 uoi3do ¥3QN03¥ 2y} 0y snobo(euy

*ai1qeis1uan weaboud "
ay) #0 jsow buiaea| ‘sjods joy 0} PaydIIJysSaJ aq ued sewbeud asay} jo asn - ’

‘a|qeisidan jou s1 weuaboud ayy jo0
uotjJod ® ey} JAIpidan ay) 0) Beys Di3dejuLks ® aue sewbeud uojjeziwiydp -

*aouasqe s}| jou 3nq ‘evwbead ay) o Aduasaud ayy pJebadsip Aew Ja(idwod v -

*Wayy Buiysanbad A(31201(dxa Ssewoedd }0 dJuasaud gy utr Ajuo
TG ‘suoijejuawd|dul an)}eAJasSuOd JO3 PamO|(® 3aq (|!}S PLNOYyS suoijeziwiydg

29

‘epy 30 [e0b ubjsap Jolfew ® sem AJUdidipy3 -

‘uotjeziwtydo
aje}iji1des 0) pamojje A||euibiyo aJam SOI1jueWAS |eJNYRU WO} saJnjJedaq

AIN31J1443




A \ul.‘&

AN A YT IR LA IO SREEFOVCEISSC I L] BERATIERS  SEROOCEEN 1A

*MO|$J3A0 uUOdN JOJJZ D1 JIWNN dS1®J O} JOU uoljdo ayy -
*weJboud

® 40 323339 (2160 ay) sabueyd jey) uoijow 3POd WJ0FJad 0) uoiydo ayy -
*§J1)}uewds [eanjeu

aajueJdenb 0} parpidads £(}1211dxa 3q }snu ewbeud ayy ‘ewbeud paJdeys ay; -

:SITdWYXIYILNNOD
' ‘Guiunre 604d paydaydun -
o

(*sajny

JapJo-uoije|1dwod (eunjeu wWoJy dJunjJedap e Ul §3(NSIY) ‘ewbeud aujul ayy -

‘ewbeud ssauddng oy -

:SITdWV3
S3TdWYX3IYILNNDD OGNV S3TdWVX3
SAINIIOI443 0L HOVONuddY INTLUANISNOD 3HL
A N NI L S AN AR 7 Tyttt BRI MDA PP RAPUYY: e

-
..

P
e

-

. \-‘\- . \‘q.\c R \.._'- \...‘.....

IO
o

PEss \.\ N GL SO SR Gt SN

e

N

S
S,

n

FoCony
i

~n

3

e lq

o
',

IR R

et me
- ",

SO

o,



Rl
.7y
<
.
g
.
P
E
-
.
P,
.
a’
2
s
E
]
K
<
K,
<
-
b
)
-

AR XX NEENA 1

" . . ‘ .
b A a4 & & 4 I N s - RO AR PP LEAAAS . X R !
M A i Lt ..ﬂ.....\... . i, \.-.-.... ..--p..-r ........ o, ....}.-h. Ny N S =t LU A Calal el L.

@ e S LT L LT LA

cUd}}ium aq s383) djeiudoudde ued ng -
*suoijejuawjdul an1)}eASISUOD aJe |(am St Judwd|ddns ay) Guissed sysa) |1V -

‘suoijejuawad|du) Guiwiosuod age JAJY ay) Guissed suorjejuawd|duy (v -

INIV 43 0} juawaiddns e ppy

sSuUoljejudwa |dw!
AA1}BAJASUOD JOJ SUOI}IIJ}SdJ 4O }aS pJepPUR)}S [®I1D1440 Ue uo daJsby

SQAVANVLS

- s - .y PR TP .. PR Tt SeTet, L P [ 2 v
wy, R o oo oy vk v ol s M AW TSI ot T e A ~. SR Y

31




Al |

Axr A TS e RSp O ASA B Ao, R TR B A e D T SR L ,.M
_.......“
o
. -.v..m
‘sewbeud uoijeziwijdo £q 3Nno 2
pajuiod £|}131|dxa aJe sO)juewIsS PI)dadxd wouy sdunjJuedap 3|QISsSOd A} |lIqepeay
uoiljejuawd|dul anijendasuod mm
Jayjoue y3im dei|iwes Joawwedsboud ® 0} (qe}dipasd aq ((Im uoiRIUIWI|dwi m@
3n1}®AJISUOD auo Japun wesboud epy Ue 0 Joineyadg K} (l1qeyJdod Jowwedbouy wm
Y
24
SUO | }ruIwa | dwi um
INIJRAJISUOD [|® JO4 PIieA 3Q (|Im SI|NJ J00Jd 3SaY) UO paseq SJd!I}1JdN ]

" A
AR

32

uoijedi4idan Buranp K|dde 0} dnisuddxd ssa| -

.

puUR}SJIPUN puUe 3} iJdm O} Jd|duns -

g MO

R

aq | LIM SUOI}RjuUdWA|dwI 301} BAJISUOD JO4 SI|NJ 300Jd

e e e
D

Ry

.*.'-‘..) t'..-"‘

SNO [ LVANIWITdWI INTLYNYISNOD 40 SIIVINVNAY

@

-..'q()

JUIRTOI

”
LIS “..

AN TIOZCIEE ROONNNNE| XRRAGLNS | BN IIRNAIY:  PRRIVUL RINIRNN NN, XAXARRNS



; RRRARRC | AAAPIS| SLEAAAAK RGENEAR] ZURRINOL| ZESLTLLY (NRSOAGH DRGH] | AN
3
4
:
:
E
:
4
w
‘sewbeud uoijeziwijdo 40 aduasqe ayy ..H“...
Ul $30 Way) uJdn} 0} aney p(nom suoljeziwijdo Jand|d Guiwuojpsad sua|idwo) - X
*128J4J0) ulvway pinom swedsboud 3294900 ||V - ...“.H
wnco_«zco.__o_.ae_. UO SUO|}I1J}SaJ [RUOI)}IPPR 3y} IPN(IUI ,
0) PasSiAndJg aq ®BPY 40 UOI}IUI AP pJepuR}S Y} PlNoYs ‘aunini ay3 Ul awl) dwos o o
a.“
*2A(}RAJISUOD S® Pal}13Jad aq O} uoljejuawadu ue Joj puyey 3 ,usi )] f
A

S3IN3INDISNOI

.

A R

el

oA
PR




2 WEDNESDAY MORNING SESSION

2.1 A Proposal for Ada Formal Semantics
- David Luckham, Stanford

There are several reasons why one wants to have a formal
semantics for a programming language. First, it provides a
standard definition of the language and how the constructs behave
for both users and implementors of the language. Second, it
provides a basis for reasoning about programs.

There are several approaches to presenting a formal
semantics for a programming language that have been used in the
past:

a,. An 1interpreter for the language in the language. This is
what is done in LISP (page 72 of the LISP 1.5 Manual).

b. An operational definitionm in terms of abstract machines. An
example is the semantics of PL/I, which was defined in terms
of an abstract tree automaton in the mid 60's.

A denotational definition in .terms of Scott domains and
recursion equations. This definition was tried for Ada.
This denotational semantics did not include tasking.

An axiomatic definition in terms of a collection of axioms
and a set of proof rules for reasoning about programs. This
definition has been done for Pascal.

These approaches have various shortcomings. Formal semantics are
generally not "debugged” in the sense that they don't correctly
define the behavior of some constructs in some situations.,

Formal semantics generally do not cover all of the features of
the language (e.g., concurrency and real arithmetic). Formal
semantics are usually uninformative in that they are hard to read
and it is difficult to determine from the formal semantics how a
given program will behave.

Dr. Luckham's proposal for a formal semantics for Ada is
that there should be two different presentations of the Ada
semantics. The first presentation would be a standard
instrumented compiler. This would be a compiler which, in
addition to compiling programs, would also explain what it is
doing in response to users' questions. The second presentation
would be an axiomatic proof system which could be used to prove
programs with respect to specifications in some standard
specification language. Consistency of the two forms of
semantics would eventually need to be demonstrated.
Conceptually, the proof rules should be derivatives of the
semantics of the compiler; in practice, the two would probably be
developed in parallel.

v ety Ty v




N
‘ ﬁ, It is within the state of the art to build the front end of :j
Y a standard instrumented compiler. The code generator would :
\ require more work, particularly in the area of tasking. The f:
standard implemented compiler would not have to be an efficient CQ
. compiler; its primary purpose is to provide an executable, .
" informative presentation of the semantics of Ada. i:
~ To do the axiomatic proof system, we need to get more :g‘
- experience with specifying Ada programs and with proving o
properties of concurrent programs. On the basis of this Py
» experience, a preliminary standard specification language could .
e be defined, and a proof system could be built. The axiomatic b
- proof system would include specifications of a standard A
“ environment, (e.g., a standard I1/0 package). A test of the proof ﬁ
}f system would be to see if it could derive the expected behavior k{
b of the programs in the Ada compiler validation test suite, Lol
S Dr. Luckham's presentation generated a lively discussion with a .
" number of questions. Some concern was expressed that using an K
instrumented compiler to define the semantics of Ada would be :?
. overspecifying the language. One might wish to allow other compilers ':
Eﬁ which are instrumented differently than the standard compiler but are ‘]
nonetheless regarded as Ada compilers. For example, the Ada/Ed -
. compiler was done in SETL, with the arbitrary implementation choices }i
&: documented. VY
Concern was also expressed about the impact on verification o
ii of underspecifying the semantics of Ada. This is of particular X
. concern in the area of secure systems. Any indeterminacy in the —
semantics of Ada should be sufficiently controlled so that -
> meaningful proofs of security properties are possible. %r
. s
A .-’.

There was some doubt about being able to demonstrate
consistency between the two proposed semantics. Consistency
!! could be a problem if the semantics were developed independently.
o However, if the semantics were developed in parallel, consistency
could be maintained through mapping.

T

v v w0 w v -
"'u"l,f"‘

" Finally, there was some concern that the semantics might
become so mathematical that only an expert would be able to use

. them. The semantics should be written so that the general user

o, can get sensible answers from sensible questions. Whether or not

T an answer is sensible should be determined in your head or by

your peers.

L)
E)

N f‘
Ty

e
»

0}“ -:':-
'}‘_‘ e
-
N 3
” » ‘
ros N
v, }‘: ¢
. )
0 -~
Y
-
e *:.

e 1
[ 4
S

35

Al 'J'.'.'_'.'_'J'_'( SR T S I
- .. - - - -

N A S S G S L RN



,ﬂﬂﬁﬁﬁ

]
AR 9

ot

Péee il

) ...: .“- '_,‘ .. ; ..‘- s

it AL

a0 8, 4y 1,y

4

sy
L)

-
<4’

AL L

2.2 European Work on Ada Formal Semantics
- Kurt Hansen, Dansk Datamatik Center (DDC)

The DDC developed a formal definition (FD) of 1980 Ada in
1981-82 using the Vienna Development Method (VDM). This definition
was not as mathematically formal as it could have been--- there is no
formal definition of VDM itself. Nonetheless, a validated compiler
was derived from this FD.

Another activity of DDC was the RAISE project. This was a
project to develop Ada support tools, such as interpeters and
verification tools.

Previous work on formal definitions of Ada has used
denotational semantical style. These definitions are not very
readable, partly due to the fact that a denotational semantics always
specifies a complete model, which essentially forces you to
overspecify). One of the goals of current DDC work is to produce a
more readable style for an FD., Ultimately, DDC would like to be able
to derive a natural language explanation of the FD directly from the
FD., It is not intended that most people who want to wuse Ada will
read the FD. Most people will learn about Ada from books written by
people who have read the FD.

Another goal is to provide an unambiguous definition of Ada. The
LRM has many ambiguities which must be resolved in the process of
creating an FD., The approach that DDC has taken is that where there
is an ‘obvious way to resolve an ambiguity, it is incorporated into
the FD. When there is no obvious resolution, some resolution 1is
chosen and an explanation of the ambiguity is included in the FD. The
FD has also been cross-referenced to the LRM.

The technical description of the FD is divided into static
semantics and dynamic semantics. The static semantics deals with the
relationships between program units, whereas the dynamic semantics
deals with execution behavior. A static semantics of Ada is
well-defined. A dynamic semantics includes sequential execution,
parallel execution (concurrency) and 1I/0, and is much less
well-defined. The process has been to start from the LRM text,
add static semantics and then add the dynamic semantics. The
static semantics consists of denotational=-style domain equations
plus some abstract data types. The static semantics defines
whether a program is well-formed and how overloading is resolved.

The dynamic semantics is formed by adding transformation
rules to the static semantics. The dynamic semantics of purely
sequential execution (no concurrency) can be read as an ordinary
denotational semantics. The part of the dynamic semantics
dealing with concurrency is expressed in the SMoLCS (Structured
Monitored Linear Concurrent Systems) methodology. SMoLCS is
based on labelled transition systems. It defines the semantics
of processes in terms of their behavior rather than their state.

36




.

The model of a dynamic environment and storage has been done, but

o there is currently no certainty that it works in all cases,
) The FD project is currently working on formally defining a subset
of Ada to test the expressive power of the tools. This is intended
!. to evolve to a full ANSI/MIL-STD-1815A Ada specification by the end
- of the calendar year 1986. After the full FD is formulated, the next
. step is to make a correlation between the FD and the LRM. This
f: correlation will be important for making the FD readable and
A understandable. After the correlation is made, the next aim of the
project will be to create an informal explication of the FD (e.g., a
- textbook). ~
N Other aims of the project include:
ii 2., Building tools to support a machine-readable LRM
b. Creating educational courses and texts
c. Maintaining liaison with standards groups (e.g. ISO WA9,
Language Maintenance Committee, ANSI)
Eé d. Comparing the Ada FD and the ACVC (are they consistent?)
. e. Mapping the FD into a SETL program for testing
-
oY SETL might have been adopted as the language in which to express
the FD, but it needs to become more flexible.
" Ada is very strongly supported in Europe. The Commission of
the European Communities (CEC) sponsors Ada work through several
- projects, including the European Strategic Programme for Research
-} and Development of Information Technologies (ESPRIT) and the Ada
T Multi-Annual Programme (Ada MAP). Research targets for 1985-86
include the relationship of Ada to knowledge bases. One area
. which has not been strongly addressed by these projects is proof
~

y systems for verification. A project to prove some properties of
Ada/Ed was considered at one time but was abandoned as too

‘< expensive.,.
I» ;
The slides for Mr. Hansen's presentation follow this page.
- Additional material can be found in Appendix B.
;
>

=

37

&l

.. - . -
e e T e e e e
L SR P e PR Pt i P, S St S
LYY IS S W P A TP YA A " A




K1 TEEAATEEN FONNNEY F R OSBGOS SOOI SEECCVCEE  ALEEAREEEEAENGSY BEAACNEE SEEICCA

(OdI'V) WUBWILIBNOY) ST 8Y) JO Ylewspel) pasaisibal e el epy.,

» VAV
VSi8L ALS—1IW/ISNV
40 NOILLINIZ3AA TVNHOS 14vdAd JdHL



o (S d

-u \. l‘ &.t -\ .,U .‘ $ -& I. I‘ \-151 L -- ‘- .Q .. -- -. -. 1 ,'dlt - ‘- -1.- .i -" .\.v-“.'.-..t-wohll ~ \-\ \.\.\l‘l.\!, J ’Ilrl.l!-. rdt a, «. -... -.\..-u.- “A '.lu’ (r*|..l*hfu AR A I‘ -l. I. '\» .l‘»\“\ .-\

"

A ab aluinl B ta

~—y

A AT e s
R

Alewswing

uonduose j0s8loid

~

\n.‘-4’.- \.‘_ . -,

-
~
l \w

e
LR

‘e

-

uonduosaq |esiuyos |

39
o« .‘w ":P";- ‘-’\

-
-

- N

R
Ry

uonlulaQ |ewlIod 3y} JO Swiy

e e et At
o« ‘-.'..:, 'y J_'.’i

.Y
-
-

AloIsiIH

BXy

TN

‘I

el

- !.-

-

”

»

.,

[

3

Y

t\

LY

>

. - " c y & ~ ~ . a . - . P
- s W OPSs e k) Uy WD sSs l Sn R we e Rl o O W

o~




2 RAS v B Sk Ahiiaiiiel

-

®eadx 0
ge | Yourasoy Uoesiunuiuods)o |
Jsjusdeieq sds
uajenuadaubay SN/
WoJ3|3| puepns
157 Ydueasay aousya(] ysiue(
BIEPaUNLIWOH

us|enuaoele(] S/|

Amw uer _.v “wQ_CNQEOO JBQUIBN 18jUua) ijljewuele  sue

40

R

LS

* \i...-

N e L.
'-"-' -

R A 'I',;I,

N

. s'):.:,'.




RS DNPONRGa N V S A ., AOTRCATRARN) LR PP S A A

A ‘at ' aih sl

awwelbols d

[enuu

.4.“ HNN

salbojouyos |

] uUoNeWLIoJU |

u JU3WAdOoJBABP puUe Yo1easa |

10} awuwieabou d

olbsien g

: ueadoun Jj
(D39D) semunwwo) ueadoing sy} JO UOISSILIWIOD

A - o - ey . ] Pag e ] 5 Y - R LSy * . [P N r N
.. -i (hvul-l. .-) tAL HUL». 5 --F. or& R .\ b oy .i.. VRN - Iy e LA ‘e ’m. - ’-




) o T I
;
AW W% o Bon SAd G gon R o B N S R Al YR doe B

UONIULAP [EWLIOY BY) WO Jandwod TIHD € paausp sey 000 — X

(1861 4890130)

uohepUBLIWOZa. (UZZ 11T 84 0} Juawa|ddns se paydaode uoiSian |eul4 —

.,

42
1'..J‘-'-'_--“" ;. .

NN AT

SONURWISS JNR)S UO SIS} SI3jsepy —

MJewus(] Jo Ausianiuf) [eaiuyoa | e josfoud yuspnig — 5
o
h-
...-.5‘

TUHO

¥ *¢

g '.“N"-
A

e .". WS

ety

».A,. 8 Y 4..14....3‘0 v v, PN



18|1dwiod epy pajeplien a8y panudp Jaa —

(40 ‘WeA) “0C1a) swwesboud jenuueninw 933 —

WQaA buisn (28— 1 8) epy 0861 J0 uoiuya(] |ewio4 —

43

(018) SONURLLISG BPY UO S8S8Y) SIISBW |RIBNSG —

AR s @ SR ObYT CSA A SAD Ay R e WAL N e k) sy el W




LAY - IPYYrT: CXRRAIIE RN PP RARErS IR AR FRRROINN WPYYEyrs IRRARAS  WAAN

S
x
e
-
P~ )
-
Y
~
i
.
a
=~

Al o B AYEOEL & A B Yo IR o BB

(yo8lodd dyIN)
EPV VGL8L ALS—UWASNY JO UOhuap jewioy —

...; -*“-""."' ‘;‘ -‘-."‘-.. '-.- -. - : AT o

44
Al

v e e N

(3Sivd 29aload }14dS3)
yoaloud |, Alsnpuj 0} spoyiswl [eWwIo, —

o

o aTa I AT O

-

oL ay Coee,

0} 0AQ pes

.

s

@,

SNy

nnnnnn

o o vy AR



5%y

r %
s 0
|

Sjeu] |ewsnpu) —

Ansnpul 0} aysuel| Abojouyoa) —

sjoo | pue abernbue] uoieoyisadg —
wawdoanag poylsyy —

LOLEPUNO} JNUBIOS JO JuBwdoPna(] —
101 ‘89N "21dJ1S "00a —

100lo4d seBA g —

siesA uew G| —

3Sivd

'y

‘ Red

AL AL LIRS

ey
<

AN/

..‘*. _‘:’_.- -~ .
B .

T .,

45

£t e tel et .m e
.'.-PJ:(..!’. .!‘);,}_.* "

R



SHOLIO T poiodap XejuAs se Sjoo) askq 0s|e)

10$s3204d Juswinoo(] —
suoneooads jo sanuadoud jo jooud —

(doys yuswidojanap §0) UOHEDYUBA pue JoOold —

0
[ ~r
3 (uonewuoysue) siossaooud Juswdoasg —
. sadAjojoud pided ;7 sisyaudigiy) —
ST1001 3Sivd
w.n\.\% fq.w.... ....u..f...-. ..l.vﬂ.‘“al\-l..-...u —_—— ‘......A.._ .... KR \(.. 7 A ,.q..J..“.....h.. e .......\...u\... K ,.. oY RPN " ..,....... AP 8] A K >4 5 . .M- ,.nl.o-.h TR L



......

,ufu-\..‘-‘.‘.-qﬂ-. ~...oc\- Tetu fs 4 s 2 2" -H—L -\..\u\.-‘.ﬁ ! a &

uonuyap snonbiquieun —

yuspuadopul uojejuswsidw) —

(3TALS) algepeay AlUbiIH —

uouys(g (ewod a8y} Jo sy

47




-,

[
N e IR Shs BEES wGY d UUR LY Jdile Y DO VY] RO/ SRR |
L]

ROASRSE

S

T Wy 2T
“u e

~,
>

ISHUBIOG —

ssewwelbord —

T I ST PR I L
P AT S 0 SR ’

, SI0jeonpy — W
SIOepleA —

siojuswsjduy; — S
AN

48

9idoad A4S —

s13MmaInay pue siaubisa(] abenbue —

sdnoix) j8bie |

I"-' .-1 - - "l .'1 - -
IR A A



3[QeAIIB(] IUBWINI0() —

JgPaRIBII0]) —

a|gedAioiold Aipidey —
a|qesiueyosiy —

SW3ISAG Jooid —
uonepliepn —
wswdoPpna(] J0ssa001d —
seig] uoneuawadw) —
SNISSILIIBY —

310eaoUdIBY| plIe 3|qQISSII0Y —

49

109.1107) Panalag] pue 1081107) —
8510814 pue anisuaysduin] —
a)9dwion) pue R)SISU0)) —

oenuo] pba —

sjuswalinbay uoniueq |ewlio4 epy

~'
\’
»y

& 72 B sy




0] ENCOURERA )

ndinQgandu) —
Blesed —
|leyusnbag —

sonuewag olweuAg (g

sonuewas aness (1

uolduioseq jesiuyos |




......U..n e H F.-.c-ﬂ .--P.llrnvh .lblu \-hﬂh. ra h\“: n. --n ..- .-F.-.r......r. r. , -. 4 .-¢--,-.-,q...|-w ln- 4 . bl b -..‘-\1.-....“.‘.\ » ..- g .;.4(!._( -- ~f cahun..-i \a.,..n..-~..-u.- IS _ il.-.-\ x.. ¢/ \\. LS .- ,\-.... ..- .-. \- J. .... --. .-.... o
SoNuUeWag sunuewag Ixo]
olweuAQ oners Wd1

" X

suonenby suonenby p

uewo(] uiewo(] Jewwesn "

Al Al W snonBiquuyy .w

(Y 0
O O O &
u’ﬁu

e
FANY LSV epy o
3
N J

bt
R4

P

<
rE
N

b
..-4\..
~s
o
- . - LI - .o . fe-u_® AN . - - ‘o » I.J
PEEEE TR IR R BT BRI TRRPANN O S AR JEDOANN TR




Al |

v

* & & &Y

LY

%5 °8°

JLXAAXXA

‘e Ny &

aJN)onag
bunjse

018
AN3
N uleiy

a.n)onag
Bupise |

a1S
AN
¢ UeN

anonng
Buise

918
AN3
| ulew

1I9PON O/

a0 ¥ v

PR S R N J\.q\ YYey: M -.... R A

hd

A
-

., ., 'u{.t.ll -

52

v

IS IAT I PPN B
BN YL YO Y I )

2P

Ay

}

«
A d




BOUDE) JO AJISIBAIULN
esld JO Ajisianiun
Hewiua(] Jo Asianiun _mo_cco.m 1
"NJ/131
vd0'0aa —

53

(98—58) 103loud ,eak 7 —

sieadl uew g —

uandiiosaq jos8loid

R X EE L b




"

. )
R

3[R A LA AN

{ S}

(Apmis) NA'N 01 buiddepy
(Apmis) Q4 epv 'shn JAJV

[oliLiadbcq feuriojl Je— uoser 1s

uoneonp3

W <--> (14 EpY
LONE|3.LI00)

S|00 |

uoneoyioadg
PV
VGLgE ALS—IN
ISNV 1IN+

uoneoy1osdg
ANNRIUS |

.

....... v o2

NN NX

L) e e e v [

I -qoa- fo %y
PRI B '

PO  DRAPSENE (Y

A AAAIAS

54

-,

LI ) 1\;)\‘~ '_.".

>

.

)

.~ . s o ey el =
L m N Y e ).
- ). EREAERN

-".'! ....

*..;.‘_::‘,-.‘_'.(3*

.
.
A
.



3 WEDNESDAY AFTERNOON SESSION 4
- | :
) 3.1 A Notation for Ada Proof Rules i
! - Norman Cohen, Softech
i. J.
Traditional notations for proof rules (e.g., the notations of ';
:,'.-: Hoare or Dijkstra) have certain drawbacks that complicate formal "
< verification. Norm Cohen presented a notation that is a -~
variation on Dijkstra's notation and has particular advantages
» for Ada proof rules. The slides for Mr. Cohen's presentation <
- follow this page. "
N b
.-: :"
q
;
(A

0o la)
" v A

.

YOO R U

LAY

I I AIRINAM

-

. 55

IR
Ly D Y

L R N T R
A RO A
&1;M£LQWMLM



Ra'aliate el it el Sat b

321430 wedboug jutop epy ‘jusawudanog °‘§°n Yy 40 xgu&oongu ® S| epYy-»

87123¢N3HOON
0888-2b6 (S1Z)
90061 Yd ‘4Aaj|en uopbuijuny
peoy £JJ43q4g 0081
NJed ssauisng (|1 sSuosel GO/
*Jul ‘ydejjo08

Uayoy) °*H ueWJION

S3TINY 400dd *wa¥ ¥04 NOILVION v

> e e . . - . e S EEEE e v, =, .0, LI LI | P PR REY »
o, e AP .....u. 1, ............. T R DA LAMARNOANE ...xv..s.. o %
l ' < . , ‘

REPEA L




Ly . Pkl - g e .Y Py | i D Y v Y v

)
ase) pus
u u
SS (= 1 uaym

fsg (= "1 vaym

3 S| A 3sS®d

(d)

D D D SR G D S S G A GRS S Y G ey ah G G G G S G P S S = >
'

.
.
.
.
.
v
LA
-t
.
.
B 4
o
, "
.
‘s
]
’

: )y ‘ss ("o

00
.

_ !

57

.

ss ‘o)

e ";‘

“~

N LY
IO e

IR
Y N

. u u - -
ki D sartdur (7 ‘n) 3si7"e3104y3 Ul pue ¢4

"o sartdur (' ny 3s1770310497u] pue ¢

SITNY J00dd ¥O4 NOILVION S,IYVOH .

Kl BEEAEANEE BNV B SR TR . BT SR PR AS B0 PN

AR » LR ol




: - e ] o oo o8 e o L T T P’ & | PASLPLAT et o rd e biela s RAPWw e S ¥ LRI

iy o : Sy > S o v . oA [ A R o ......\. 3 N S s..x....... -_...,.
,\51-. lh’. ~ h <ﬂ\h\tr a2 1 s o A a L I

*(sudnyay
‘s}1xa doo| ‘suojjdadxa) mo(s weuboud geauy[uou a|puey 0) puemymy - o
*$3103439-3pIs Yjim suoissaudxa a|puey 0} pJemymy -
"JOj P2ajunodde® usaq AvY SUOIIENYIS [(|® JAY}aym ule}JBISE O} pJey SI| 3] -
*3uo0 30 oL
Uot3onJisuod Jijewojine 33341p 0} J0U Inqg ‘jo0ud ® L3iysnf o) pasn aq ue) - wm
NOILYLON S,34Y0H HLIM SH3I80¥d . e

“n
Iy

-t




g

- e
LW

"mO |4 weuboud uveaul|uou Jo s3J23448 dpi1s ssauppe jou s3oq -
"sjuawnbue ajqissod [|e Joj pautsep si Tm ey djepi(en 0} Ase3 -

*3N1IINJISUO) -

d .cmmv dm pue A=4 fay ¥s17 9310477 Uy

59

Go [ 2 AN

o ¥

90 ( (d ‘'ssy dm pue (' fay 3819031043 u])

—

= (d '35> pus cmm (= =4 uaym ° - —mm (= —4 Uaym S7 a Ised) dm

S3NY J00¥d ¥O04 NOILVLION S.WMLISNPIQ

- . . Ce v e - - LR =] I “. \.-n\ .
W S Qs el sns MR wsA U S50 WS nr 240 aEl WS wBl sl W

.. .. N W T, -~ . ; s v v, v il A LN PR P v..4
A g AN T, 0 sy Sy Y RERER & Aty e AR ATAS PRI -



TSR SO

-

‘S)ududje)s
3|dwrs pue punodwo>d yjoq 03 $3||ddy -

*333 ‘aduanbas juawajyeys ‘juswajeys
® S| }InJ3suod 3yy 31 diqissod L|up -

s83460ud ui N wesboudqns wouy
uUJnjad e Jo N doo| JOj4 31x3 ue y3im uoyjajdwod IN J1x9

Lot ' CF P L AN 0L LAY A ol )

Pasied uoi}dadxs jeyy y3im voyjajdwod
t(dweu uoijdadsxa ue)

-
PRl 29

uoijajdwod [ewuou tTInu

60

tbuimoy oy ay) jo suo s Snye}s ayj

“83e3(payd Aue aq Kew UGT31pU0I3S00 ay)

*2)3 fuoljeue|dap fuoissaudxa ‘Judwayeys ® aq Kew T3AT}SUGT Yy

- '_'-} Yo .

7
o
I-\
(ShY®3S ‘UBTy1pu0s150d 'TINJISUGT) U0} IpUOIasd A
by
- 4
A

.

“n
b

NOILVLION S, QLSNP IQ OL SINIWIINVHNI

o e
o
M PG

hJ
-

I SRR
AL A ._'\A'_’- I

P P

-'{:‘-l

»
[ %




+*

......

="y oV . + . y
ePeVa s 4 v w AR e, L5 Yy B DL RAASM IR PR R R AR SR PR A A R A

C (LInU f¢a 'y ‘y) dm *ay dm uo (3 4 ‘a) dm )
Pu® ( (LInU ‘(3 'd ‘n) dm ‘y) dm J0 (2 ‘g ‘y) dm )

({2 S3S(®J Y puU® |ePWJOU S| A $! UOI}IPUOIAJd jSayeam]
JO [3 S3si®J A }| UOI}IPUODAJId }Sayeam))

PuR ([d S3SIBJ NH pU® [BWJOU S) Y }I UOI}IPUOIIJD }Sayeam)
JO [3 S3Si®J Y }! UOI}IpPUOIBJd JSa)eam))

[3ISJ14 PA)EN|®AS S| A }| UO}I}IPUCIIJID JsSaNeIm]
PU® [}SJI} PA)eEN(eBAd S| U 41 UOI}IPUOIAJSD }sayeam)

(2 'd ‘(MHYy) dm

‘Jouu3zTIureusUO) uey) Jayjo @& uorjdadxa Aue JO 4

C Linu f¢ t1nu tabuey,y ul A pue d ‘v v.as Ay dm

61

pue (¢ [I1nu ‘( |thu ‘abuey,y Ul A pue g ‘A ) dm ‘y ) dm =

[¥SJ1} pajeniena s) A 31 UOI}PUOIIID JsSayeam)
Pu® [3SJ1} PajeEN|end S Y 41 UOI}IPUOIIJId }SINRIM) =

(Linu g fenyy)y dm

¥Y TUNOISNIWIG-3NO 40 SININOJWOI G3X3ANI {3TdWVQ3

X AR W e A0 A S R s IR o By el v &R v R Ny IR

‘.
L

L
LURERY
. a"

v, .
N

0

AT

.\l

-

L I A PR
.

VA AL S YRR

o \.:$.:.‘..,...\

3

4

KaR

VS 0e A

At

ol
oy

SRR

P

CodC IR
D)

L]

-—a



DOCAM W s s QA4 G RN TAR e U W B

C (LInY f(uoudg uieu3suo] ‘4 ‘n)
JO ([INU f(Jouu3 julegsuo] ‘g ‘u)
JO (JOJJI JulRJISUO)

pue ¢ (||nu ‘(Jouul juleylsuo) ‘abuey,uy Ul jJou A pue 4 ‘n)
JO ([INU f(JOoJdd3 JuIRIISUO) *d ‘A)
JO (JOJJ3 juIeu}sSuo)

dm
dm

‘d
dm

dm
‘d

‘v)

‘o)
‘v)
‘o)

dm
dm
dm

dm
dm
dm

(JOJJJ JUlRJ}SUO) SASIeY

, ¥oayd abuey ay) pue |ePWJUOU AJe Y PUR A 41 UOI}IPUOIAJd JSayeam)
u JO (JOJJJTJUIRJIISUO) SISI®JY U PUR |BWJOU S| A 1 UOI}IPUOIAJd }sayeam)
. JO [JOJJJTJUIRJISUO) S3sSI®U A 4| UOI)}IpuOdaJd jsajeam))

pu® (([JOJJJ JUIRJI}SUO) SasSiey

¥oay> abueu ay) pue jewyou ade A pue Y 41 UOI}IPUOIAId }SINRAIM]
JO [JOJJ3 JUITJIISUO) SISIeBJ A PUER |BWJOU S| Y | UOI}IPUOIAId }Sayeam)
g JO [JOJJJ JUIRJIISUO) S3SIRJS Y 41 UOI}IPUOIAJd }sSayeam))

[31SJ14 Pajen(end S| A 4| U0} IpPuOIdLd }sSayeam]

pu® [}SJI} Pajen|end SI Y 41 UOI}IPuUCIdJd }sSajeam) =

(JOJJI JUIRIISUO) g ‘(n)Y) dm

“ Q3NNTINDD ITdWYXT -

X xA

) ST oL DL ..., A S h 4N S AN DR

Ty

N

AT PX X A AP N

‘- b

o,
”

FANE O

.
Y

P e g

=

RN

Ay

ot

e

I

o

it
.

AL

)
SLRE RS

. o>



’ F

o ’ X [ Y s - .
ey .,.... o .--..-'--J*,‘_ ,. X DN h-..un AN SN .w.... ARG ] b

(36uey v Ul A pue gy ([LINY ‘Y] 4 % CLINU ‘A] 4)

pue (abuey,y ur o pue gy ([LINU *A) 4 B [LINU ‘Y] 9)

= (d) [LInv ‘(n)y) 4
t9duexy

le .Amu ‘d .NUv dm ._uv dn =

s Z33 4y ('s 1oy 4=
¢s 5 g9 s tay oy

(
() t
(d) (L

iSMO| |0} S® pauISap 3q Uy} Aew ‘Rp Lq pajousp ‘uoly)i1sodwo)
((36uey,y uy A pue 4) [1(NY ‘Y] 4) CLINU *A] 4
pue ((abuey,y ui A pue 4) [||nU ‘A) 4y [LINY ‘Y] 4
= (d) (LInu ‘(nyy) 4
s dJuexy
(S'd D) de «d—1s—13y4dm = (d) S ‘3] 4 t4q pauisep si

(sajedipaud (- uouau_nogfv (- SISNIT}S X SIINJISUOD : 4

STYNOILINNS NOTLWRNOISNYL 31¥I1034d

A DSBS BRI ~ S -VRNN PO ROET LS RNEE T JPUIy

-
r
’
v*.
fe:
s

. w "
.9""

~
v

‘,‘n :-’\’ )

2O N




.]llﬂ . — . o

O R LR T Y PR TR S S R R R
I I R NI R R A P
ccedy trinu g gy rrpne 83y gy crinu Pay 4 =

(Lenu S nu fcpnu g .muv dm .NuV dm .-uv dm

1 of

passadoJdd s| "2 aJojyaq 3snf ploy ysnw ([(nu ¢ ) dm

[mmmmm e eaa\

passadodd s| Zs 3J033q )sSni ploy j3snw (||hu * .NuV dm

[mmmmm e\

passasouyd s| €5 3J033q jsSnf ploy jsnu (([nhu ‘g .muv dm

‘uorjadwod (ewdou yyim ‘puemaazse ploy o) si d $1

*aspdo yeyy uy €5 pue 25 ¢,
$3donJ4ysuodqns Guissadoud 0 sysisuod 9 }3nJ3suod e 30 Guissadoud jeyy asoddng

ONISSII0¥d 40 ¥3QN0 3814IS3Q 0L
1HOIY¥ 01 1437 Qv3y 39 NYO SNOILISOJWOD

S i S SRR SN

S

64

A d
DI YA

~

AT T
“t et
M o

l. .0‘. ° .'.l\‘




X

, c.....(.\..h ; s \\-. \nﬁ\ ;}.I.‘J.I.s.bi .v...‘.\.\..-.\.\..-. ..- ... tetet f\yx .I..« u. AR ..;u.,.n\)u Wa : e -\-\I Y " ¥ -
PANPY | BRRRNENCH | DAOTRAEEAL ISR SRR 't ..\;.\r\..\_ K cs..m.....\u AR Av‘.

AP A Y A

€5 }onJ3suodqns 40 V0133 (duwod [ewJou AQ pamo| |04
12, 1JNJ}SU0IQqNS 40 UO13}3[dWOD |RPWJIOU AG Pamo| (04

oy }onJ43suodqns 40 uot}ajdwod (ewuyou 0} juajeninba

S1 D }dNJISUOD 40 uOI1}3|dwod |eWIOU 4O 33448 Y] t3sedydegey
€ XA ol ‘
ctinu "73] 4 R CHihv "0y 4 R (LMY T3] 4 = [LLINOU TO] 4
3}tum Lduns
.0 .N .u
(d) (C1ipy 73] 4 R ((IAU 73] 4 R [LINV " 7D] )

. = (d) [1InU ¢D) 4

Guij1dm 40 peaIsu]

SIIINVW3S 3NI430 0L SNOILWNO3 IYNOILINNG 40 3Sn

(YIPM 'w. e s o v \.\b A nH& e c‘;

- -Idh
LA AU

65

e
.
S

_:.'_'. .

o

2

-t .
a® e,
PR PPy |

"‘ ‘I' ‘.
oSt M
Lt dnaind andoindl 2B

calrpTe .
o, L,
O . Y T

o,

P WP




(&C(0) [d] ¥2unfuod™ppy 30 anien a3y} S| yeym :ZIND)

JaWJO4SuURJ] T | |PN PU® [d] JAWJIO}SURJI]TIURISUOY = [d) }OuUNfuo) ppY

(> %3 90 @y P4 300 = @y C4 saridu Py ¢

«d " reu = @y (tar00 g
(d> 4 vox () Y4 = @y 3 vox 'y 3
() %3 4o (@) 9= (ay 4 w0ty
() %3 pue () '3 = (dy a4 pue tyy

“Nu pue nu SJawJojsueyy djedipadd [(e pue 4 sajedjpaud [(e Jo4

66

D Pue 4 sajedipadd [|e JoO} d = (0) [d] JowJossueu| jue}sSuo)

d s3yedipayd (e Joy d = (d) Jawuojssuey| | |NN :

SNOILYNOD3 IUNOILINNG ILVLITNIIVY OL AN3INIHIWW ¥3HLO0

s .
......

......




v X . 4 g 10, s AR iy ..-... RS A . ..-.-... FNA S ’ -.\ ..(-.\n .
mvu! \qos.\ 41&— a--\#--uqn\*\ V. ; . . B »h .Wu ! v s-\u —.- .A‘; ..-‘\. Ty’ -- Am-- A ... ‘. -.-s .~...... .._.... ..; ..qu\n -..\ \nﬂiﬁn\}\ﬁ ~.. e q.—--...na. JN_
rd ‘iﬂh\..-hl “\.\.\0\.\-\.\. SR Y ot ' PR SRR ) ATV Ta%s RIFIPAE A LI I I IR PLELE M R 'Y PR [y

(fabuey, v u1 jou ) 3duUNfuod PPy B [LINY ‘Y] 4 ® CLLNU ‘n) 4
JO [JOJJ3T)ulRUISUO] ‘Y] 4 B ((INU ‘aA] 4
. JO [JOJJ3 juledysuo) ‘A3 4

. . pue (fabuey,u ul jou A) OUNFUOY PPY B [LINU ‘A] 4 B CLINU ‘Y] 4
JO [JOJJy3 juleJ}sSUO] ‘A] 4 B [LINV ‘Y] 4
JO [JO0JJT JuleJ}sSUO) ‘Yl )

y = [(JOJJITJuIeIIsSUO] f(MY) 4

(L2 ‘Y] 4 % [LLNY “AY 4 JO (2 *A) 4) .
3 pue ((2 ‘A) 4 B clInv ‘Y] 4 JOo (2 ‘YY) )

) = (3 ‘(n)Y) 4

67

) fJ0Ju3TjulIRU)SUO) ury) JAY)O & uol}dadrxa ue Jo4

: (3buey,y U1 A] 3ouUnfuol PPy R (1IN ‘Y] 4 B (1IN *A] 4
, pue [abuey,y ul A) duUnfuUod PPy B [LLNU ‘A] 4 B CLINU 'y] 4 =

(Linu ‘¢ayy) 4

; . Q3LISINIY SININODWOI Q3IXIANI : e

. - - . K . By - 1 s ¥ ®
: ESEE  TERYYYER P R




o
»”
’
"
L
y
1]
¢
s
‘
s
1
?
.
0
1

-

3.2 Secure Systems Working Group
- Margie Zuk, MITRE

s
VP

PN Yt

()

2

Purpose: To study the impact of Ada on the design and
implementation of secure systems.

f].l

= ¥ o 2

Up to now, language issues have not had a big impact on
secure system design. Ada, however, has many features that
previous languages have not. As has been discussed earlier in
the conference, there are many uncertainties about the
/Y additional features and how they will affect security design.
These features fall into three categories:

£~

M ]
LK A

»

D

a. Language constructs =~ what are the security issues
connected with Ada constructs such as tasks and
exceptions?

XS
| SR

i

b. Run-time Support Library (RSL) - the Ada Run-time Support
Library is like a small operating system itself. How
should the run—-time support library for a secure system in
Ada be designed?

AP

ce Compiler Issues - how can we be sure that the
unpredictabilities in the definition of Ada do not -
undermine the security of the system? “

iy All of these questions need to be addressed before Ada can be
used with confidence in secure designs.

1 g
o

-

Although there are complications introduced by using Ada
for secure systems, there are also benefits. The Ada features
to support software engineering (e.g., packaging, separate
compilation units) make it more probable that Ada code will be
correct. Other languages have no support for software
engineering. 1In addition, the fact that Ada is a high level
language with features like strong typing makes it superior to
unstructured, untyped languages like assembly language.

a
[}

ARy LN
tl"f -~

I ¥
-ty
v 1P

The security community is interested in "zero-term” -
solutions, i.e., what can we do with the technology that is .
available today? Ms. Zuk's suggestion was to restrict the use -
of Ada constructs in order to enhance the understandability and
verifiability of programs (e.g., the "conservative” compiler
approach presented by Nora Cohen). The slides for Ms. Zuk's -
presentation are follow this page. for

LrS A LIS

«'a’a’ \‘l.‘\:
L]

<
o
=4

ja 8,2, % 50 Te v 1

68

gl




A RANARRAR | (3000000] (EAARGEET! KAXKAANN “OUSOINNS AP ARA CRRARNNAN DOLORAATY g JRARNASOLY [Rran

Ra

<

dNOYY ONIMIOM SWILSAS FANO3S 5




R EENCCURET ENEESL I SO BTG BT SEROSCEE DIEEEPOL SRS IS IR B 1

SW31SAS
J4NJ33S 40 NOILVINIW3ITdWNI ANV NOIS3d .

JHL NO vav 40 1JOVdWI 3H1 ININY3134 Ol
3S0didNnd



e e 4 ¥ el il et k| AN 5 el ARSI
. i

3
...........
..............
..............

.......................
)

......
.....................

dNO¥D DNINHOM
SWILSAS 3¥ND3S IHL 40 STIVOD o

NYJFONOD 40 SVIUV o

MIIAYIA0 WILSAS ONILVYIdO FHNOIS o 2

M3 IAY3IAO _ 5

e K2R W v &Y ey Tes i A b ry BT STCEER SRR, -4 BEEGANEIY OO -




A USRI Ot ALY B TR KAAT YA

e Bl ey v,
SR BT OO [

JUVMOUYH

EEG INLLYHIHO 30{1S3H

72

m:wwa

[
Y
LR
)

Ca et
n'-{‘-.

3
o

Sl "',,"-...S):

(go1) 3sva DNILNdWOD a3isnyl

-

4-..

265
..u-i»~ aJ..'\.Qsd\q-. - : . V.! Vi P PPN R P P e e Y Y A . § *!l
. . el i h \l‘.! .lu o ' IR -,-4, ~ LA -1- [P AL n'.-' ih” > 51‘.'“.« Py .-. .- ..-. EASA) h B ] Conn ,- ‘ !lvl.vﬂ ‘fl' .

S
W,



sauljepINy 3 ajeuoney
BU3IID :Sapn|ou|

~Jjoog abueliQ,,

€8 Isnbny G| ‘€8-100-41S-2S9

BII9)11D) uolenjensy .
waysAs Jendwo) parsnil dog




ime A5 B0

uoI}o3djoid jewiuiny — @

uoijoajoid Areuonasasigq — 9

uonoajoid Auojepuepy — g

UON3]0.d pajlIap —

‘SUOISIAIQ BM3l) uolnenjeny




3009 P

S114 $110 ;

T14d0NW
TVINYO04

75

S

[ P

N

4

“..\. .-

AJ1I10d

el
At e
_-_’._-.-".

.
™, 4

SS300Ud NOILVOI4I¥3IA 3JHIL

XY

NN L
adn e e

1
i
f
‘s
-
\ s V"
[
o
IS
v,
rf-?
-
..
k-
o
L
\
W
-
2
A
’\




1 R | [CEE A N CISEENOC BEECUNEENCY SEROOTEE SRR ANEE 'EEECCARENR ] B O A

mzomh<hzusm4mzm W3LSAS mm:omm mOu asn
AOVNONVT NO SNOILOIYLIS3Y INIWY3ILIQA o

ALTYNO3S Y04 HOVOUddV
431IdW0O IAILVAYISNOD. AQNLS o

| SANSSI ¥3TI4dWOD O
AUVHEIT L40ddNS JWIINNY O
SANLVI4d JOVAONV] O

SNY3IONOD ALIYNIO3S M3N FONACHLINI
1VHL vav 40 S3yNiv3id 3JHL1 JIVINIT3IQ

76

dNOYD ONIMYOM SWILSAS FANIIS 40 STVO9

--------




SW31SAS vav 34n23S NI
SLY0443 DNIOONO MOVHL ANV AdILN3AI

NOILVOI4dI¥3A ANV NOIS3d
W3LSAS JUNI3IS NO 1OVAWI 71S¥ AQNLS

SIOVNONY]
43H10 ¥3A0 S3UNLvid vav 40 13S
d310I¥1S34 HNISN 40 SLI43IN3I8 AANLS

(“1INOD) dNOoY¥Y
ONIXYOM SW3ILSAS FUNO3IS 40 STVOY




Rt EEEERLNEEE [ SL BRI B ONEAA SRR [ SECRCEEN A ERACIR P A BT )] SRR RS, AT

WSINVHOIN ONIXMSVL vav-
413S1I F9VNONVT 3FHL 40 ALIX3TdWOD

SNOILVINIW3TdWI ¥ITIdNOD

AYVILIT L340ddNS FWILINNY o

Fu)

N¥3ONOD 40 SYIuV 4

.
a

k|

LS AP
s{mﬂb {

LIRS SRR S A

{
f
SR




- P O s A i AR e o ud i ol ot S A F T TR TN T TR TT

C Y

As part of the secure systems talk, representatives from Softech ity

< and Verdix gave talks on specific Ada RSL's. o
L} »
> ‘
3.2.1 The Softech RSL ‘

! = Juern Jurgens, Softech
o e
- The Softech RSL runs on top of UNIX BSD 4.1 and 1its sole -
LR responsibility 1is to handle signals. 1In an architecture like the f«'.
Nebula architecture (MIL-STD-1862B Nebula Instruction Set bt

- Architecture, 03 January 1983), the Softech RSL allows some Ada .. -
".f features to be implemented directly in hardware (e.g., task switching ~::
is supported directly by the ©Nebula hardware). However, the %

< Collection pragma is not implemented in the component of the RSL that \

[ does storage management. The slides for Mr. Jurgens' presentation ::-
= follow this page. L=

-y -y

-'l{

A 4
Lo

+ fl ..
™. -
[ .
.
) D)
-
re s
[ 8
. rd
* o
5
E gt
.t R
~d
-
Y .:-' 3
W s
(S L
r .
Cs
2 A
e ‘-
) -
re ..
.
o

L 131
"’ ‘I

z

Iy
‘a'W . -
\-::, Y
) o~
.1 0
3

-

. 79

g

SN A T



ey P . . ’ . -
ORI TR R BT SEDDIN A Br ] JEECCARTS

< 4 a

AHVYHEIT LHOddNS IWILNNY
H3340s

o I € v v e e e - - -
” F IS AR ’ e . TAAAANNS s ot v v e s %Y Y Y RRAATT v AT,

H
e



s 2 ok Al S AN e i A yYyev ‘(- Ty v . oo h v - . e - ;
M N AR RN OSREMRAA  SAAAaAAS  IERER AR RN SRR ARSSANO]  ISORCIRREN SIBCRTA |20

NIHOWW Sdld

T°h 4ST XINN

81

Sy

(3007 d3LVY3IN3ID)
WYY¥903d Yav 9NI1LNI3X3

1SY¥ AL 40 SIOVIYIINT INVIYOIWI LSOW

B A R VR BEVEARNG,  SERAAEE  AEFAAA (AR OIS § SRR, SO 1%




COANE ARV R SECIS IS ZEERTE TERNCETEN DO ! B O,
WYY¥904d vav 3JHL 40 NOILNI3IX3 LYVIS * NOILVAILIV W3LSAS o
TOYINOD 40 ¥IISNVYL ‘SYITINVH NOILAIIXI 40 ONIANIH * AY3AINEA NOILd4IIXT L
1¥04dNS 3007 d3LVY3NI9 * LY04dNS SNOINVTIIISIW o
01 1X3L ‘01 WILN3NO3S ‘01 1J3¥IA * INITANVH 1S3n03Y 0/1 o
NOILVNIWY3L NSVL ‘NOILVAILDV JISVL ‘SNOAZIANIY vaV : INIWIIVYNVW NSYL o
J9VH0LS 40 NOILYIOTIVIA/NOILVIOTIV ¢ NOILVYLSINIWAY J9VY0LS IIWVNAQ o
STYNIIS XINN JO ONITWANVH = AY3AITIA LJNYYIINI L
SHSVL VAV 40 ININVM/ZONINI0TE ¢ ¥3HILVCISIQ XSYL o

Pl . s g

0NN

-

A AL AT

"

>

o : -'\ ) %-'\.'_..

e



Y o RCRERPRIPENS | LRTAFALLS P b] SR REE Ol RPN IR  SERBUECUII Y  [RREACREALNCRLRY — ERPRIPRVRRESY TSN BRI P 1R
e

Rl A AL AL AN

S$SS300¥d XINN INO

-

AL Ash s

T WY W

J

w

X ASVl vayv e 9 JSV1 vav VvV MSV1 vayv J

-

v —
w 801

vav -

—

MNOVLS o

Z1 AN3IWO3S ASV L 7
vayv S
~

el

~
\—

D N A
. LN

0l INJWD3S 3q0D

ERCPR PR
‘ TR

NOILV LINIWITdIWI MSYL vav

..

.-
2"

AR R

. e I P A R s 1 ‘.- R a3 ' o1, . LT v A ‘. M - L 1
.~. J" -hl..b. 'Q ./nn.bh -rul.. ..-la-I4 B YLt e A .z, ~ .-\_ ..\.. -L.. .«u -.f... 4:.4. -' 1 -'-. A N ... ..v “N n-v ’y




AD-A172 747 PROCEEDINGS OF THE IDA CINSTITUTE FOR DEFEISE mLVSES) 2/4
ORKSHOP ON FOR Hﬂ (D) INSTITUTE FOR DEFENSE ANALYSE
BLEXRND IR VYA L. v 83 IDH-H-!JS
UNCLASSIFIED DECL thHiJOS?Q IDHIHO-BS-ZOS

T
HEEEEEEEN
EEEENEEN
EREENEER
lwl [
HEEENEEE
HNEEEEEE




o
3
»

s &

G B P RN AT PANGLIGEE M I ot i

R\

-

LA AT A o,
VTR O Yoo s S A Y
» R Pt “ 4, aat .

“l“—-——l 0 5 m m
E e 12 goo
s B

o 20

fl

E e

===
li=

P
e s o . e P MY » WA W




R oy W T Wy e ArS TR e IR Wy RS

(9 = 01¥d)
A X NSVl vav

: (V) INVYM '/Il'

TOYLNOD 4SO X NSYL vaVv -- ***°

HOLIMS MSVYL

AP/ e o ; XX A ARB RIS | SRR INRARRAS RS RA

‘3¥oo018

XA PPN T )

OOL BIAC-| BRI

(8 = O1ud)
VvV ASYL vayv

g1
vay

AIVLS
ASYL
vayv

e

84

.

A

J‘\

PO AR

A

PR

'\""’;".f":‘

~
-

sl

.'-.
R

'."“. “. *'.-('.‘:..

.‘-‘

(O

29 N n¢‘n et
Lt Dty

N



A DR WA

ta' g

d $lwtl¢ , &' vy -~ % v s vO « F Q ) I -. X K YNy \ R 7 : &4y 5 T o J °
N, X ol EAAAD ; DAL, PR PR R m\ i 4 1 ] AR
oA Syl ] VM?\..‘\W.H(&\F.. (20 .~.~~.\..-\..\_- %.‘QHIJ(.A...-N‘.-J 5 ...h\-\.- AL “ *\bq'-ﬂ\v ..,«vo [

1SIT AQvIY NI S3N3n0ENS 31EVNI / IMEVSIA ¢ MVHL /7 373344

SNSVL ¥3SN T 3A08V v
‘1SI7 AQV3Y NMO ¥I3HL 3AVH SHSVL W31SAS

T3A37 ALIYOIY¥d ¥3d 3n3n0ENS 3INO * LSIT AQVIY

N3IATYA ALIYOIYd ATLIIYLS

Y3FHILYASIA MNSVL

o ETE T TR TN T

P -.V\.o....!
Mﬂw&w ~ SCLERRES X

85

e

T T T L

ey Ls

LIRS 4
; 2

St TN AN

»



TN

»

v

FA oo D v SR T WM GG B

(9 = 0IY4d)

X dSvi vav

¢1S17 AVI3Q 31vddn

!X NSVL 40 1XIINOD 3AVS ) \-

A -

HH..< JASVL NS 3Y

() YWH v ProA

WY VOIS «—

<
(V) INVM

WYTVIIS Y04 YITWANVH HSITEVISI -- (Y WH W ‘WYTVIIS) SASIIS

AY3A 1dNYY3LNI

PARARAIRT  HIPAANRAE | XX ARAA AR

T % 4 % N N

(8 = 01¥d)

V ASvL vav

‘X0

—

‘X0

(C) WV

(0°T) AV

86

e IR

-.“-".'.;- S 'u.

..' .
<oy,

o

%

e _“-’\-‘_'. ‘...'- e

)y

QY AT

u .{



AR

o - -

o i i | i e g RARD e s y ,nv. & 4 ‘A . Al
| (FRRRakl RN ARy Gooihin LERORRN X

SINILNOY NOILINWOI ¥MIL
TSY¥ JHL HLIM
A3Y3ILSI93Y 41 AIMOANI

S3INILNOY NOILITAWOD NOILVY3IdO SNONOYHINASY

YO¥YI WYY¥90¥d NOILdIIXI VAV &—

13 119IS

YOUYI JDIYMNN NOIL4IIXI VAV &— 34491S

SIDIAY3S YMIL ‘NOILVINMINIWI AVIQ V@Y &—

WYv9IS

SO M AY B

L4 B
AR |
.‘s\r.. VY

Al
P

Ml e T 3
N A 4

d.“n

LR

A A

T e e L™
“u ", =

A
0

et Yt
- -a
e, .



H Y2079 IN3¥Y¥nD 3HL OL INIINOT3E S123r90 W 3ILVI0TW3A ¢ 1I37170D

A0~ NIAI9 V 01 INIONOTIE
‘S173rd0 40 1SIT7 GIINIT 40 ¥3AVIH : X0 NOILVWYOINI dViH

( A3N ) S1I3rg0 A3LvI0OTIW ATTVIIWYNAQ o
(°°°SMIVLS XNSYL vav °SHIL vaV) 3ISN TVNYILINI 1SY ¢ $404 Q@3sn

3344 7/ J07TVW HONOYHL 3F9VHOLS 3LVI0TIV3A/3LVIOTIV

RS



94 %% 4N IF- X v l)l“l.,_ . ‘.\. ‘... ;e ...,.0-4 --. \. \- \» il XA --‘ e < ‘s ..- .‘.» { -\,..\ P4 \1.. (4 A \. e o ) --lfnvonv \ﬂ' . ..-.\ \-. o,
St L0 v-”.d.. A SRUEERRG!  ARIRRRI  JATFARY TRy 'COODAAION SEVENGY (OOIALE AR Sy

s ala a

(91 = O1dd) (8 = O1¥d)
X ASVL vayv VvV ASVY1l vay

Qn

901

a1 .
op (49621u) : d) @ 14300V vav

vav

\--— - G D DD G D G THEPERG G S

1

‘(d)e'vy

NOILV LNIWITdW! SNOAZIANIY VAV

» W = [N 4 ™ ot s, R [ 1Tetst « o N B ~ N A B T a’e ~ . v
R AN AR BRAAEES  JEECUER  AERVXEE VRS BN SRS




e b
-

y ' uw®

»

b Y

el e

e ) 08 2ot T R A | N

7R RSO BEECPROIIIDE EEEERNI G A OO SRR 2] SEEAS

S31V9 AYINI INVAITIY TV N340 -
* 37dvl 1231713S aiind -

SNOILIANOD N3JHM S3ILVYNTVAI 3007 d3LVYINI9 - ¢ LIVM 3AILI3T3S
TIVD AYINI A3WIL 31VYINIIIA ¢ 1VI AYLINI TYNOILIANOD

3NIND AVI3A ANV 3N3ND AYLN3 ¥3INT ¢ TIVI A¥INT AMIL

SINIWILVIS 1I3713S

Ch I 5 TITAAEF RN ON VRIRENSIY PP

a0

'_:.‘_'.._ .

I TSN
DR

\__*..,"..;.‘»_'-., .

.u-" v "h

L L Y
DRI e
OSSN

At et
NI
LR

o .-..'




‘NIVHD NI JSV1 HOV3 ¥04 A¥0LISOd3d IX3ILNOD S3IZIVILINI -

AR SN S SAREARES XXX s
.‘ .-N!ﬂ.\l\hvllﬁ .-su..w-.\.-(.. n-f; #.‘.‘\i‘.ﬂﬁ\i‘ \v\ ..

PRGSO A LN RSN I

JSYL INILV3I¥D SHIOTENN VI LSV
‘NOILVAILIV 40 AN3 STIVNOIS

‘ISVL M3N HOVI A9 d37TWVI u

ASVL 3INAOYLNI L )

ASVL INILVIY) SHI0TH 3
“1SI17 AQV3Y NI XNSVL HIVI S3IVd ’

91

(NIVHD NOILVAILIV) SNSVL 3LVAILIV o p

. NIVHD NOILVAILIV ~
OANI MSVL SHNIT “)IVIS MSVL ‘€JL VAV S3ILVI0TV MSVL 3LVIY) o

@403y 123rd40 NSYL ‘¥OL4I¥IS3IA MSYL SINVW 300) d3LVYINII L

NIVHD NOILVAILIV 3LV3¥) L -

NOTIVATIDV GNV NOTLIV3I¥D MSV1




» TR, % RS .Y s A A [ L N PRGNS DA, DRI RN ) \\\\\\-“ ‘ ih\¢.\c \\.\l . -.M-ﬂ-.... 4

LR s W ER G A vsr orl Sw U G B e ey W v B vy B
\ o
, X7
i

e

.”...

FINTE .“....

LINNODATIHD SiLINN LN3¥Vd LNIWIHD3IA .

N3IHL AQOS YSVL V SI LINN SIHL 31

!3¥SVYL LNIAN3I4dIA HOVI ¥Od S1¥93a N3INLIY o
0 = LNNODQTIHD ¥O4 1IVM \“..
K
SHSVL LNIAN3d3a 40 LSIT gINNIT -
cJ °,
gJ1 vav gJ1 vav u 1511 wyoolg B
‘ NOILVYWYO4NI R
ANNODQTIHD ASV1L o
y %
\
R \“

[
|
i

"%

«

qyooO3Iy
NOILVAILDY

.ns‘(

. e
..
- -
‘e ey Ve
K "N A

e

QILVYNIWYIL JYVY SHSVYL LNIANIHIQ Si! TV IYO0438 NHNL3N LON LSNW LINN V

G

NOILVNIWY3IL NSVL

-

- e,
P

13
L

d'sf

- PO P P M . AT PN A W e c o . A




=, A g d m.‘...!l A .v Pl e vV, i) N . e ° . i
R LRI 3= s LR PP ] PSS ..-.-..»...\FP\A LA S R | ERRR AR A DA R B A _-..q.: PR IR

“

1°h gS8 XINN

Ol Widd

ol 1LX31 ol 1D>3¥ia Ol IVILNIND3IS

ONITAONVH 1S3ND3Y O/1




ol el WXXHX AOBOLL| TN SRR AR AAARRhE, JFOLERIAA] OO RIS

| PO AN N SORMIRY, JENCA I | B SRR YT BEEAREY R

3SdVX 3JHL 01 JMEVIIVAV 34V SIIIAYIS IS3HL °

SNONOYHINAS WYY90¥d VAV JY¥V SIITAY3S 3S3IHL L

JWYN (W3ILSAS LSOH) S.3714 V INILLII (11
HL9N3T INFRIND S.3T14 V 9NILL139 (01
34 V ONIGNIMY (6

. X3ANI 3714 IN3¥YND 3JHL INILL3S (8
X3IANT 3714 INFYIND JHL INIAIIYLIY V4
3713 V 0L INILIYM (9

3714 V WOY4 ONIAVIY (S

3714 V 9NISOTD (h

374 V 9NIN3JO (¢

14 vV INI13730 (c

3714 V ONLLVIY) a

Ql




rwrew

T W Wy O W

LT A St g

Nl At fas J 8]
- tavan

’

! \\...\
r\

P M) .“-, 2,8 T, G 6 KN N AU 4..%.-...#.( 3,0 ¢, % v
*_ ..\l.\-‘\c\h(\ \- '.H...u.-.-.nﬂ.un... ’d \‘“ _ .— .. o ... --f-o.l.- 3 -q\f-.-\- -un\\c\ 4 N ... o » ._.... AN ) ...-... e, i ‘..n....\.i\\..--.- .ﬂll

11 OL QIYYIASNVYHL SI TOHLINOD “ANNO4 S| YITANVH 41

5S3y3aay xu._azz\\r—‘uoou

d yo4d
379Vl

HITANVH
NOI1d30X3

5S3¥AQVY ¥3T1ANVH] 300D jg-—-emmm e -

d 40 Q¥0D3Y

NOILVAILDY

(3LVNIW¥3IL 3) NOI1d3IDXT IDNO0J NOILYO8Y NSVL -

(MO¥YI D1YIWNN) NOILJIDIXI IDNO0S AYIAITIQ LINYYILNI -

3Sivy 300D G3LVY3INIAD -

AY¥3AIT3A NOILJIOX3

UL ARSIV SN BRI BERARNEEE SO X AR O |

A8 G3INOANI




pALSC Y s

i

JSYL JLUNIWYIL ‘MSVL INFYYND NI JYIHMANY YIKINVH INIHILWW ON 4l

IN3YYd DIWYNAQ NI Y3ITANVH Y04 HOYVIS MNS3Y -
3MVIINddY 31 LISVL INITIVI. OLNI NOILd3IX3 3I1VIVAOd¥d -
JOVY0LS IIWVNAQ 3344 -

SNSVL IN3AN3Id3a 40 NOILYNIWY3L Y04 LIVM -

“LINN IN3YYND NI YIWNVH 9INTHOLVW ON dI

4 lv).':]- g J ..\- » .-.. » ... I .- .- I.-— ) :4.“1111!. \ ,- -s-\.-.~.n.l .,c.- ......‘Qt . - . X -,

"y -




v
. »
-y DATA STRUCTURES FOR EXCEPTION PROPAGCATION :;
0L
i o
s %
A Activation Static Frame o
ﬁ_ Records Descriptors (SFD's)
F * | Enclosing SFD Pointer
. e’
L‘.; . : '.‘
- i
e Code Handler Address <
Y Procedure SFD Pointer » . Exception -
h q . Handler
) . ) Table for .
e e Block r :b
i~ . Code | Handler Address
. ) -
0 ]
ﬁ ~ Dynamic Link
] r ::
’p. . - -
R f Enclosing SFD Pointer
L = 3
i Exception -
Handler Table
PR for ‘e
3 Procsdure q o
§FD Pointer . \
b > | f Enclosing SFD Pointer &
.t Procedure . o
p -
o ) Excapti "
. - caption -
s - Dynamic Link Hanider Table R
for .
~ Procedure p
Y
* —
. \
[y ‘\ - )
R v "4
2
0 y
»
X
Ay A
[ o~
" 97 N
g "

¥ RN '.r A AN 0 J- ( N PUPCNN T e T e e T
'---'-- 7l fe NN -.-\.« -\\ «\ss» ESEREHL LN,

Ty WL




o OB w2 BT R BYy vvA e el v Ay s RS SN oS Y sy ol son B

BN e T g

-0
»

WVY90dd NIVW VAV 3INOANI ° .
% SLINMN AYVYHIT ¥3Sn 31vy04v13 ° -5

TSy 40 SLINN AYVYdI 31vy08vid ° :

9R
“roe

JSYL SNOWANONV ¥04 3JWvyd XIVLIS dn L3S ° %

L YFHANVH TWNIIS WILINI dn 13S °

. NOIIVATLOV W3ISAS




.'\ N

3.2.2 The Verdix RSL
- Omar Ahmed, Verdix Corp.

The security issues for an Ada RSL include both
inter~-program and inter-task security. The interaction between
two different Ada programs of different security levels running
on the same machine is an issue that is external to Ada. The
concerns are the same as they would be for two programs written
in any languages.

Interactions between two Ada tasks of different security
levels that are part of the same Ada program is much more
Ada-specific. Inter-task security may require some kind of
"level” pragma to indicate the security levels of the various
tasks within a single program. Such a pragma would direct the
compiler to check for certain kinds of interactions (i.e.,
rendezvous between a SECRET task and a TOP SECRET task or shared
memory between two tasks of different levels). These checks
could probably be done at compile time.

Supporting such pragmas would, however, effectively change
the language, since such pragmas would forbid certain
interactions that would otherwise be legal. A program might
compile successfully without the pragmas but not with them. It
is more manageable to adopt the convention that a single Ada
program runs at a single level, with all tasks within it at the
same level.

One approach to limiting interactions between Ada programs at a
single 1level 1is the Rushby separation kernel approach. In this
approach, programs of different levels are isolated from each other
in separate domains, and can only communicate through the separation
kernel. The separation kernel only allows very strictly controlled
imter-program communication., The separation kermel approach could be
regarded as a zero-term solution to inter-program security.

The Ada LRM says nothing about inter-program communication,
Inter-program communication could be added in the RSL (e.g., a
"mailbox" facility). Programs could also share memory. As
further functionality (e.g., shared memory, file systems) is added to
the RSL, more complicated security mechanisms have to be built
into the RSL, and verification becomes more complicated.

Verifying the security-relevant portion of an RSL is a near term
goal which is boundable.

The slides for Mr. Ahmed's presentation follow this page.

99

......

>
WAL

.

< v o Tl AT e Tt P T P e T e T Ty AT e tTe o, AT T R B A e et Tat e et el
D00 N B YD AT TR N NI N e N0 2 y N\vv;nhﬁy‘ﬁﬂﬁﬁq3h¢wuﬁ-.&V\»ﬂﬂw.fc,

»,

P
Sy Sy Sy

"

5

~ ¥ s
A

S > ¥
.

LA

.-
A $

s o 13

5 YO o

.
-

e XA

-.I.,
’

a0 0
« 9P

1

t'-{'v;.,' o, .

’

. 4
Y
Sw
-



B A MBS BT i) ahn Am sne W Son B sEs o Sin R s JR v Bl

-

uoneiodio) XIpI9A
pauyy rewiQy

S AC,

-‘

-i';' Con

suIe)sAQ SUIRUNY ePY XIPIOA s 3

-

TR T II Trrgwrvywowow.

R

o -.'\

.;: o

e

-\'.

RIS DOIODN RAEAENA NOPPPIr)| s NRXXKRAA PP



......

wd)sAQ sawmuny epy Ue Joj sonss] AJuUnodg e
wsAQ owInUNY ePY XIPIoA 3Y], e
wNshg
ruawdo[oAd( BPVY XIPISA 9y} JO MIIAIRAQD JUg e

101

VI OB S B 28 o W s R e WSS d wdY wn v Y B




W) SAQ yusurdoaAa(] epy

XIPpJdo A

VS R e S DI



T Ty LA 2 b ol o Loy APl
et N NI [P MM e 4
AN/ o wlet,® v s e Ye . e L . Lty T e T B CONC I gt B o g
HERERE A ‘\\-la . P P . ) St e e e . r [ Y a L, Y, 8, Y8 -
~T L e L SN A2 ] A DA B TRTE [ SN S ) et P AN ' ! :
Lt ot ] . . . e '
. - - N LI ) e Yu . N “« 1 L

...................
............

‘PApAcK XI0YIA — A

0
‘r
J

— — — —— ——— — —— — — —— g—

< Lt
- e e
- «

uoneEnund] A0ydny ¢

umennidg o) 2

UEOu0Y) 3p0) |
QN3 XJve

et . RN
AR R AR e

P
'y -

..
NN
2oalon lem

103

PO WAL Y

L et

-4

AUy 2eeS » o
Aoraoey 013 MRS € N
AUy 2eNAS 2
sshevy o | “

ON3 INOU S $1001 ]

--.-n.unlﬂ. P ..-. PP ‘.<.... K L \ e - N . |
H * ! Y * S et .» -r g . .. ..c R ". .-...o..n. ...‘... ..-...-... -..~ .,..- .. .-\;...m‘ ..-\..\.-. .v-i .\»v\.“.-r .‘....




P
.l.

R-\..\u .\.n.-...nh .....-,... ! .AI..- - ....-\..\.., )...1 -..h-.--...) E..H. K . .-.\..-s -, ..-...4 .‘n.\é - 4--1-{-.. -& .-...-...- . — .... .....”v ]
i L}

104

d[qeIadreisy pue S|qEISOYRY e

sjoo], a1oddng Joururei3olJ e

SWIANSAG swnuny ajqem3yuo) e
J933nqa(J J1[oqUIALS PARUILI)-UIAIDG o
Jo[idwo)) epy Ayirend)-uononporg e

WHLSAS LNHNdJO THAHA ®PV XITUHA -

BOATLIIS . SRR A vy ey N YV VB T e EoA R Ao 0 T T Te i 0 N
1 M ’ i) . a s - ’

PR

..........



("I DADV) ¥861 Joquiaca(] ZT parepi[e) e
(Areaqi-nnur ‘usuald uy eyrungns “3+9) Apajdwoy —

(:AUa][9033,, pouLIz) 359} p[oY pua-4uoL]) a[qeley —
(ydesBered 4Aq JARY] 39uaIajal sadessopy) einddy —

(sButurem pue siowus quatayp +008) Apusy —
(suresBoud  [eas,, J0§ 082 XeA uo wd] 000T_) 95ES —
J3[idwo) Lirenty-uononpolj e

SHUNLVHA WHLSAS LNINJO THAHA &PV XITYHA

VI A% Wl WY B A s e e R s W e s mm) WG

R
[N W

et
. e

105
I IS P o S S o TP AL U SRR S A
S AR S OO SV SR R A X

LI

oty
N
X

‘e '.- ..- -‘D- e '.- '.-
A A S S

N,




mou f 72 vpy :a8enduery-nin —

"9)9 ‘uonelay anrep ‘sfeidsiq
‘sputodyeasq jo Joddng ajeidurony —

suolsrap Ju@3nqa(y autjumoq —
[9A9] WSS YO [9A9] 204n0g —

PAUBLI)-URBIDG —
Jo33nqa(] o

SHUNLVHA WHLSAS LNAWNJOTIAHA PV XIQIHAA




A
¢

» ey

YR S L F

-
»o -3
v o
N
o
o -
L -
e .
e ‘o
l“ .‘-
.-..
I..‘ W
P \‘.

Verdix Ada Runtime System

R
. Y
e RS
u‘ ' « .‘
. X
»
. »
3
<
'S .
e -
¥
. ]
LAY !
G -
ay -
> 2
-
:'.' B
-": I
'.‘v
)
. ‘
] ;
7 b
ol _ -
107/ -
P

. "'. ':4-_‘-/ (f ':1,:1‘ _'..' ,_.;".. 'r..'

[



]

< A -’ MO [ o AR h...... e .y...-. U nol N A SN | e -..-- LY -

NP S g

L N B st e

A AN L rE

T
-

eI wwy

Al gt

T T,

S n SadcA -t
104

wNsdg Sutyesad() 1soy
|
wNshg swInunyj epy
|
- urei3o1J epy

CAadt G Al A A ek

T

AMIINAG WISAG sUwInuUNY ePY XIPIIA

b Jia L Sl et Sa b 2

-

..-..-w..n'.,- Y )”’-\tl-v -- -\ -.- -. '\ I\i ] ‘\ -\ -.\n,-ﬂ -.”-... N ~ P’ Tl n.a..... -..--/;- o ..‘.. - -...v-./..*v ﬂ\ --- --.l‘\ 7 % '’ it -. 3 o) I‘\‘ﬁ -




Suddnqgaq

ndinQ /mduj
Suipuel uondadxy
Bupyse],
yuawaSeue]y AJIOUWIA

Ayeuoroung




(uonoo[ioo aBeqre3 O ) uonedo[reIq °
uonRIO[[Y e
(sjood
‘syoeys ‘sdeay) soamjonns Alourowr Jo uonezifeniu] e

yuduIadeue]y AJOUIdJA

110

*
'
Y
Ly
4
&



------------
............

ssa004d wdsAs Sunesado )soy a3uls e
se pajuasaidad st wersoud epy Yoey =

wIsfs
Surnyerado 1s0y 9y} UO patofe| are SNDIAIIS Julyse], e
Jossaooad

§)1 JO MIIA [enuIIA ® (P wreiSodd epy uUe soplaoid e

Supyse],

W I W sxn BN 8 sss SR s WS RN W0E Emy




-.F..;-w.. -T.... s

- atee"a" 8"
SO WA SR SRy
B

T

o

P

(feuIoUqe pUe [EULIOU ) UOHRUTULIS], 5
S9PS v

sydaooy

(peznuoud) Surmpaypg
uolsuadsng

uoNBANDY
(99 ‘sgDL ‘SeIs) uonezZi[EHIU] pUT UOHEIL)

e ¢ o o o o o
Oy

A I - Te ‘. - - -
RSN CECS

A

TR
-

o™
~

(+u00) BupysRL,

S gt

AN

=~ -

’

k.',i.‘lilWJ‘ \ﬂ--\w\.- oy ) ..-!,- -.-p-lvniw.".N u‘... ‘.cm...\.-\..wl. .‘. PV A 4 -\ T RS C ... .4......-...1;. g SOG4 4GNS P 5 7o T ) ] %, 8,



bat 9et s

» o g {

‘- P B e 4 Y e Matara, «, % tgty ; ‘-..Fﬂn& [, .\o\ﬂ.\. AN
QNHOH..M 20 \.“. .“.\..x KR i r...\. \.....N r\. ....h).\.‘\. .7, _ b TR ...r.\. X .w.(;‘ BAY \. AL ”.....5 A \h OCANR

. N g A 4

D ..$.. . ‘4‘-

LPICEPYL TS I

13

SIOLIF] Suiyse],
sIOLIG] 93elo}g
aremajog
aremprey

Surpue uondadxy .

K SN e wR . R e WS LSS0 W 5X) .. SR W,




v he 4 v Y - i et . » . p -
LY L. "\ -/\ﬂ ~. u~l . P.t\-.J...M ﬁﬂ-.-. ! e L .... ‘els 2 h- ..-u- \I\L .-J_.v --1-?:-J gf.- .‘. .--.-q\.-_ ..u....‘-.... .Lb-“. - .-..-\-\. -\ A'. ........-.... .W-....

114

wsfs Sunesado 3soy ay} y3noayy paytoddng (=

. O/1°1L] e
: O/I1¥RL, o

andynQ /induy

‘M'. pe . a_ - . v e, Y atala A aTX M A e e e v e = - PO
Kis> .l\.\gl‘. .-.'r.n.r-..-dﬁ _\-&, .\.._ ..x.r 8. .\.r...s 1 ).....!...\JV r .\.\...v)\.q..u?. ..........a.....-.., CRARAAA A TS NN



JUIYY

- P

[spows 3uiSdnqap spise-puelg,,

uoneuLIojul Su{se) TPy O} §8900€ SuLdangap
spuuoud 03 poziue3lo wWI)sAs dwunUNY e

Sud3dnqaq

s <X P S 0D s W IR Ly WY RNy s Ry e

i

. .
------

115

e




A A .t . . ‘ ' B b ) Cindd
PLANL L gl . PRAPLFAEL A s ! PR A
AP o .
PR

- ) o, . .., - sla - .
B4l EEROOAED P R ZOR LTS A" | AR T T R [N BRSO 3 v

Pl st a') 4t ad-aih ah Rafl A A R A Ao i il e g Sl Aoy ) Jafu’albads el Ahe ate 4%, o
A, i

8I9Le[ WSS SUINUNI NBIPIULIAUL O] — J
q10ddns Jossooudn gy — = A
VOSLI-ALS-TIN g

pue ‘A{jurej gg [s3u] ‘A[rurey 00089 €[0I0I0p Jof pdoddng —
dlqeandyuod uadsfg —
¥PY Ul UIPLMN —

2ATNIIXY UIY-TeIY BPY XIPISA :UOOS e

(Apeay 7 JuUn) XLYA ‘ULI}~Tea)] e

N e (et

.l ‘Q- .II.I,.'.
PP BRI AL 4

SUISAG pappaquIy 10j saWInuNy epy

-.'-._'-..'.'.‘.'-'.
- o af e Lt aP gt Q"
LY 5. PN '.A"_p{n'_p -

}
b
p
J
j
;
]
F
h
!
|
b
ﬁ
.
b
»
]
h
L




Yo e me oy T N o LYY Caos T T T Pt Mo, . e e s v Y VYV, L SRR ! Gazedaseind  AAMS

W) SAQ awnuny epy

ue JOjJ

117

SONSST AJLIMI9Q

wl R ..-;.. .-- .‘b ,... m .h -.- ..--\ ” . .. ..- u-. . .i‘. .-.I- .-/- - .v- -o\ F\-i\ v n. c.\. ...P. _. nn.. ..\. .4- l'\.- \- \h. - r-w- -., I-u. .v. .-




- e e 'y . Ay L re, B g g e A R ‘i S A e o ., ’
.

o] BRI | (CRENCC AR AR BSOS Y] AT AR VGO DA S RN EEEYOONII T I AR
.
T

118

(sydn.Logu) s)UIAd SNOUOCIYOUASY
syndjno Apremonged ‘saoejmuy O/1
Aumoog qseL, ~IRU]

Aundag urerdol J~1uy

-- ‘VQ - ™ot LA
s, '.—,..~’F.r i

:3Je WI30UO0D JO seare feuonounj




Y |

L3 T

2SS

o B

3ye)s §s3004d 9]} JO SSOUJOAIO) —
uonoesuer} € Jo uondwadJ —
Suissaooad jo uondnuinuy —
SHUSIAG] SNOUCIYIULSY o
Jpowrirad £31noas v ssodoe syndny —
mding/nduy e
SNOAZIpPUAI Joj sani[iqede) —
83{se} pa[[ed jo adoog —
Sunjsey, e
asnal Alowaw JOj uoneuLiojul jJo 3ulrea)) —
§)23(qo [200] pue [eqO|3 0} 8830y —
ruawIadeuRA] AIOWRJA o

SUJIDUO)) W SAG dwnuny epy dynadg

A WL s YAy IR Y W, e RS TR SN

119

:K‘-X{&‘_- N Cha TR .

[ P o
e .Y
':I-A‘Lw

¥ J‘b"‘."'-..'-
t: oy -

.;:;

e
et

" Q- .- '“ l-.
I ANEN

'v" N0

s

DI B
e
-:'_,n.c'

I I P
t‘u‘.‘x‘}:’r:t.f‘:




O AOVEENN B AR S BT/ M | SCSACIICCSCIE BV S S AN  [X

aouapuodsaiiod uonejuswdjdui] —
SUOIIISSY —
8. S —
s[opou £A3LINd9G —
NUAIYIP
erduald [[m sonljod AUNI3s QUBYIP ULs A[)Ijun
SUIIOS - WINSAG swNUNY TPy POYLIdA ‘[eloua8 vy e
PayLIaA aq 0} §pRU
IAINDIXD 180y Y} ‘f31mdas ureiSoxd-unul spraoad of, e
PARYLISA 9q O} SpARU WNSAG
suImuny epy a3y} ‘Ayunoas 3unysej-~raul spuoid oy, e

120

SUIWAIINDbIY UOIeIYLIOA

«
.’
o
Y

«
e
A ¢

T e



etk . - Y FEAERAE I

«
.
D

.

p)

'
»,
-
A
.
'
[4
0
3

-’

4 THURSDAY MORNING SESSION

-
»

The Thursday morning session consisted of summaries by the :
Working Group Chairs of the workshop activities relevant to ‘
! their working groups, and recommendations for actions to be taken
* in the area of formal verification of Ada. ¢

ES Richard Platek announced that an attempt was being made to

create a SIGAda Committee for Formal Methods, and that 90 minutes had !
been reserved at the next SIGAda meeting in Minneapolis, Minnesota, \
w for the Working Group Chairs to report on the Workshop. The hope was
expressed that this committee would not be isolated from other SIGAda
committees.

IR AT IS I SV O R e
.

N Much of the Workshop was devoted to the issue of a formal
- semantics for Ada. The Europeans have done much more in this
_ area than has been done in the United States. Several proposals
- for work in the area of Ada semantics were put forth, including:

~ A
a. Identify and standardize a set of restrictions defining a
s "conservative” implementation of Ada that would simplify the
\ semantics. ]
~ b. Develop multiple formal definitions of Ada aimed at
o facilitating proofs.
c. Develop a standard instrumented compiler to answer
i programmers' and implementers' questions.

I1f several different formal semantics are developed, there
~ should be some way of reconciling them or demonstrating their
= consistency. Decisions like what form to present the semantics
- in and whether it should be a semantics for full Ada or only a
restricted subset should be made on the basis of attempts to
! actually create a semantics, rather than on a priori judgement
. about what is feasible.

. Some concern was expressed about whether it was appropriate
to propose standards (e.g., a standard instrumented compiler,

a standard formal definition) at this time. There was a general
consensus that there is a need for a standard formal semantics
it and a standard mechanism for reasoning about programs; it was

’ felt that these two items were not the same thing, and should be
distinguished. There was also a general consensus that pursuing
David Luckham's proposal for a standard instrumented compiler
would be useful.

.
[

m Friedrich von Henke presented the following recommendations

?: for work in Ada specification languages:

. a. Experiments with specifying programs in ANNA should be

i carried out and the experience evaluated, with the goal of

'S y
;\

121
N

L AL AC N SN

O 2 N A N A I R T N i A R TR PRI R LT AT AN




eventually arriving at a generally accepted specification
language at the code/package level,

Languages for specifying concurrency, real time behavior
and floating point arithmetic should be explored. Much
basic research is needed here.

Development of Ada-oriented requirements, design and
specification languages should be further explored. ANNA is
a language for design and code specification.
Design/specification languages for Ada should integrate
advanced concepts, and should be based on a formal semantics
of Ada.

The point was made that decisions about languages, in particular
what constitutes an "Ada-oriented"” design/specification language,
must be based on experience. It was suggested that if the
design/specification language is too divergent from the Ada
philosophy, it will be impractical to use.

Margie Zuk presented the following recommendations for work
in secure systems in Ada:

a. Delineate the features of Ada that introduce new security
concerns (i.e., concerns that are specific to Ada).

b. Investigate the "conservative” compiler approach for
security. What impact would optimization pragmas have on
assurance that a system is secure?

Determine what restrictions should be placed on the use of
Ada for secure systems design and implementation. This
would include formulating a rationale for any specific
restriction.

Study the security and verification issues related to the
Ada RSL.

Identify and track ongoing efforts in secure Ada systems
(e.g., the Army Secure Operating System (AS0S)).

John McHugh presented the following recommendations for work
in near term Ada verification systems (0-4 years):

a. Develop prototype verification systems built around
existing specification languages; experiment with the
prototypes by applying them to real problems.

Investigate the use of semi-formal methods, e.g., the IBM
Clean Room project.

Consider Ada-specific verification problems, both in the
abstract and from the point of view of existing systems
(e.g., what problems would crop up if SCOMP were redone in




v "s Ty
a

'l *y

Ada). The latter will help to produce a really
subset of Ada.

Consider constraints on RSL's and code generation to enhance

confidence in verification.

123

useable

L L

.

rovw
PRV RN ]

s,

“p "¢ 5 s



SEGAAL A DAY LR A

- ' APPENDIX A

7 ADA VERIFICATION MAILING INFORMATION




™ o
I

'._“‘l‘—-‘

APPENDIX A

Ada Verification Mailing Information

Since verification impacts not only coding activities but
all development activities, it is desirable that many groups
continue to be informed about the progress of these workshops.
Therefore, the account ADA-VERIFY has been created on USC-ECLB
and will be used as a central repository for Ada Verification
announcements, files, etc. The list shown below has also been
established on USC-ECLB to encourage the exchange of ideas:

Ada-VERIFICATION-LIST
Messages that are sent to this list will be received by all of
the individual electronic addresses that are included in the
Mailing Directory.

The Mailing Directory is provided as the remainder of

Appendix A. It is a directory of workshop participants and other

interested parties along with their postal, telephonic, and
electronic addresses.

NOTE: The AJPO is planning to move all ECLB accounts to ISI.
Addresses will be (name) @Ada-20 as of 22 November
1985.

* Those persons who attended the 2nd Workshop are rnoted in the
Mailing Directory with an asterisk.

Pl AR AR

% 'z

A

Y A




."'.‘ PN

P
FONNUN
Fatatrta e s

T

-

Mailing Directory

Bernard Abrams

Grumman Aerospace Corporation
Mail Station 001-31T
Bethpage, NY 11714

(516) 575-9487

Omar Ahmed

Verdix Corporation

7655 0ld Springhouse Road
McLean, VA 22102

(703) 448-1980

Eric R. Anderson

TRW DSG (R2/1134)

One Space Park

Redondo Beach, CA 90278
(213) 535-5776

Dr. Thomas C. Antognini
MITRE Corporation
Mailstop B330
Burlington Road
Bedford, MA 01730

(617) 271-7294

Charles Applebaum

1058 Boyurgogne

Bowling Green, OH 43402
(419) 352-0777

Krzystof Apt

Thomas J. Watson Research Center
P. O. Box 218

88-K01 Route 134

Yorktown Heights, NY 10598

(914) 945-2923

Terry Arnold
Merdan Group

P.O. Box 17098

San Diego, CA 92117

Ted Baker

Department of Computer Science
Florida State University
Tallahassee, FL 32306

(904) 644-2296

ABRAMS@USC-ECLB

TRWRB! TRWSPP! ERA@BERKELEY

SECURITY ! TCA@MITRE-BEDFORD or
TCVB@MITRE-BEDFORD

CHA@MITRE-BEDFORD

MERDAN@ISTI

mE

‘1"‘1 T

14

1B
l"

A

4 .
[P

RO




=

,
N

Lok
%

Yo v

E

.
A .

Fak o o
AR

r
.

2

m‘

David Elliot Bell DBELL@MIT-MULTICS
Trusted Information Systems, Inc.

3060 Washington Road

Glenwood, MD 21738

(301) 854-5889

Dan Berry

3531G Boelter Hall

Computer Science Department
School of Eng. and Appl. Science
Los Angeles, CA 90024

(213) 825-2971

Edward K. Blum BLUM@ECLB
Mathematics Department

University of Southern California

Los Angelos, CA 90089

(213) 743-2504

Alton L. Brintzenhoff SCI-ADA@USC-ISI
SYSCON Corporation

3990 Sherman Svreet

San Diego, CA 92110

(619) 296-0085

Dr. Dianne Britton HELBIG@ISI
RCA Adv. Tech. Labs

ATL Building

Moorestown Corporate Center

Moorestown, NJ 08057

(609) 866-6654 or (609) 924-3253

Dr. R. Leonard Brown BROWN@AEROSPACE
M1/112

The Aerospace Corporation

P. O. Box 92957

Los Angeles, CA 90009

(213) 615-4335

Richard Chan RCHAN@USC-ECL (bad)
Hughes Aircraft Co.

P. 0. Box 33

FU-618/P115

Fullerton, CA 92634

(714) 732-7659

Norman Cohen NCOHEN@ECLB
SofTech, Inc.

705 Masons Mill Business Park

1800 Byberry Road

Huntingdon Valley, PA 19006

(215) 947-8880




* Paul M. Cohen PCOHEN@ECLB §
Ada Joint Program Office

! OUSDRE/R®AT

Pentagon Room 3D139 (Fern Street)

Washington, DC 20301-3081 o

(202) 694-0211

A

Q
A

[

' Richard M. Cohen COHEN@UTEXAS-20
P Institute for Computing Science

2100 Main Bldg.

University of Texas

Austin, Texas 78712

(512) 471-1901

X

PP IP IV l-. + ]

g
-

Lt

Michael D. Colgate FREEMAN@FORD-COS1
Ford Aerospace & Comm. Corp.

- 10440 State Highway 83

. Colorado Springs, Colorado 80908

2, * Mark R. Cornwell CORNWELL@NRL-CSS .
! Code 7590 Lo
Naval Research Lab L
Washington, D.C. 20375 .

(202) 767-3365

LR | i

Major Terry Courtwright COURT@MITRE

WIS/JPMO/ADT -
7726 0ld Springhouse Road |
Washington, DC 20330-6600 .
(202) 285-5056

Talal
T r-e
Pl

a
*

‘ Dan Craigen CMP.CRAIGEN@UTEXAS-20
. ¢/0 I. P. Sharp Associates
265 Carling Avenue
. Suite 600
Ottawa, Ontario, Canada K1S 2E1l
(613) 236-9942 -

“v1

et

Y
f.l"l
. 'y

Steve Crocker, M1-101 CROCKER@AEROSPACE
. The Aerospace Corporation
- P.O. Box 92957
. Los Angeles, CA 92957
S (213) 648-6991

' John J. Daly WCOXTON@USADHQ2
USAISSAA

. 2461 Eisenhower Avenue

: Alexandria, VA 22331-0700

- . .
Ehat'} a .

e

AN

b’ D 405
PN

)

»
°




YR g : - 3 T
1S §8 & "aly 0l i M S e Sl - Balrad Al s At A LA I Sl gt I L AT AN s 4K aA L ot e o i n Al a i AL Al ML oA AN Pt

Tom Dee

Boeing Commercial Airplane Co.
P. O. Box 3707 $§
MS 77-21

Seattle, WA 98124
(206) 237-0194

3

1

.
) ]

LA N

[y

&t

Jeff Facemire FACEMIRE®TI-EG@CSNET-RELAY
Texas Instruments ‘
P.0O. Box 801

M/S 8007

2501 West University

McKinney, TX 75069

(214) 952-213%

&&’&

o 1
/AR )
LRI

e
’

A & YA
X
.

* John C. Faust FAUST@RADC-MULTICS
RADC/COTC _ o
o Griffiss AFB, NY 13441 o
o (315) 330-3241 5

e Gerry Fisher vl
& IBM Research 35-162 =
P. O. Box 218 S
Yorktown Heights, NY 10598

(914) 945-1677

e A-
l‘-.l

Roy S. Freedman FREEDMAN@ECLB
Hazeltine Corporation

Greenlawn, NY 11740

(€16) 261-7000

-‘: -,'

James W. Freeman

Ford Aerospace & Comm. Corp.
Mailstop 15A

10440 State Highway 83
Colorado Springs, CO 80908
(303) 594-1536

"~ -
"
N R AT l

G
e
Bt O

A
r.r

Mark Gerhardt MSG@MITRE-BEDFORD

MITRE Corporation

Burlington Road 4

o Bedford., MA 01730 i
(617) 271-7839 R

2 Y

v -
v
)

Chuck Gerson

Boeing Aerospace Co.
.- Mailstop 8H-56 e
] P.O. Box 3999 RS
s Seattle, WA 98124




Y

e

CAAAAA AL

s 7
4 _o _ 0 _
PRENE AEAY PR A

Y R

O
WU

NN

: \:
.ﬁ-d
“
-
\H
~

.

Helen Gill

MITRE

Mailstop W459

1820 Dolly Madison Boulevard
McLean, Virginia 22102

(703) 883-7980

Kathleen A. Gilroy

Software Prod. Solutions, Inc.
P. O. Box 361697

Melbourne, FL 329386

Virgil Gligor

Departmeant of Electrical Engineering
University of Maryland

College Park, Maryland 20742

(301) 454-8846

Donald I. Good

2100 Main Building

The University of Texas at Austin
Austin, TX 78712

(512) 471-1901

Ronald A. Gove

Booz, Allen & Hamilton
4330 East West Highway
Bethesda, MD 20814
(301) 951-4624

Inara Gravitis

SAIC

1710 Goodridge Drive

McLean, VA 22202

(703) 734-4096 or (202) 697-3749

Col. Joseph S. Greene, Jr.
DoD Computer Security Center
9800 Savage Road

Fort Meade, MD 20755-6000
(301) 859-6818

David Gries

Dept. of Computer Science
Cornell University
Ithaca, NY 14853

(607) 256-4052

A.6

GOOD@UTEXAS-20

GOVE@MIT-MULTICS

GRAVITIS@ECLB

JGREENE@USC-ISI

GRIES@CORNELL

.........

aling Aokt A A AN G AL al o aR o A o 0 ol SEalli atit bl ais UL oS DA e A S R

Tamt B, e, e

|3

e

R |

T
a's

o

'1. '.n..;

:‘:'l

EO S RO

=




David Guaspari

Odyssey Research Associates
408 East State Street
Ithaca, NY 14850

(607) 277-2020

J. Daniel Halpern

SYTEK Corp.

1225 Charleston Road
Mountain View, CA 94043
(415) 966-7300

Kurt W. Hansen

Dansk Datamatik Center
LuudToftevej 1C

DK2800 Lyngby

Denmark

PHONE: ++ 45 2 872622

Scott Hansohn

Honeywell Secure Comp. Tech. Center
Suite 130

2855 Anthony Lane South

St. Anthony, MN 55418

(612) 379-6434

Larry Hatch

DoD Computer Security Center
9800 Savage Road

Fort Meade, MD 20755-6000
(301) 859-6790

Linn Hatch

IBM

17100 Frederick Heights
Gaithersburg, MD 20879

Brian E. Holland

DoDCSC, C3

9800 Savage Road

Fort Meade, MD 20755-6000
(301) 859-6968

Ray Hookway

Dept. of Computer Eng. & Science
Case Institute of Technology
Case Western Reserve University
Cleveland, OH 44106

(218) 368-2800

§3$

RPLATEK@ECLB

'

O
Yy %0

A

SYTEK@SRI-UNIX or
MENLO7O ! SYTEK { DAN@BERKELEY

KHANSEN@ECLB

HANSOHN@HI-MULTICS

HATCH@TYCHO

BRIAN@TYCHO

HOOKWAY®CASE@CSNET-RELAY




Paul Hubbard

Dept. of Computer Eng. & Science
Case Institute of Technology
Case Western Reserve University
Cleveland, OH 44106

(216) 368-2800

Jim Huitema

National Security Agency
R831

Ft. Meade, MD 20755
(301) 859-6921

Larry A. Johnson

GTE

77 "A" Street

Needham, MA 02194

(617) 449-2000 ext. 3248

Juern Juergens

SofTech, Inc.

460 Totten Pond Road
Waltham, MA 02254

(617) 890-6900 ext. 316

Matt Kaufmann
Burroughs Corp.

Austin Research Center
12201 Technology Blvd.
Austin, TX 78727

(512) 258-2495

Prof. Richard A. Kemmerer
Computer Science Department
University of California
Santa Barbara, CA 93106
(805) 961-4232

John C. Knight

Department of Computer Science
Thornton Hall

University of Virginia
Charlottesville, VA 22903
(804) 924-1030

Major Al Kopp

Ada Joint Program Office
OUSDRE/R&AT

Pentagon Room 3D139 (Fern Street)
Washington, DC 20301-3081

(202) 694-0211

IR LI T S S
e e TN

)

HOOKWAY%CASE@CSNET-RELAY

LJOHNSON@MIT-MULTICS

JJURGENS@ECLB

CMP. BARC@UTEXAS-20

DICK@UCLA-CS

UVACS ! JCK@SEISMO

AKOPP@ECLB




Pos

~ * Thomas M. Kraly N
- IBM Federal Systems Division N3
Software Eng. & Tech. 4D08 o

6600 Rockledge Drive s

! Bethesda, MD 20817 e
’ (301) 493-1449 %

%

Dr. Jack Kramer KRAMER@ECLB 3
Institute for Defense Analyses .
Computer & Software Eng. Div.

.od Alexandria, VA 22311 0]
~ (703) 845-2263 A
o Eduardo Krell -
i 3804 Boelter Hall .
- UCLA =
. Los Angeles, CA 90024 ~
- Kathy EKucheravy g
DoD Computer Security Center -
NG 9800 Savage Road -
ki Ft. Meade, MD 20755
-, Dr. Kenneth Kung KKUNG@USC-ECLA ™
P Hughes Aircraft Company ~%
- Ground Systems Group n
M. S. 618/Q315 o
i P. 0. Box 3310 e
- Fullerton, CA 92634
(714) 732-0262 g
~ o
ot * Carl Landwehr LANDWEHR@NRL-CSS L
Code 7593 e
» Naval Research Laboratory D
b Washington, DC 20375-5000 Y,
(202) 767-3381
:;?. * Mike Lake MLAKE@ECLB X
A Institute for Defense Analyses o
Computer & Software Eng. Div. =
- 1801 N. Beauregard Division -
o Alexandria, VA 22311 -
' (703) 845-2519 o
» -
ﬁ Randall E. Leonard Py
» Army Sys. Software Support Command
ATTN: ASB-QAA =
o Fort Belvoir, VA 22060 ",
\"
o

<"

RO
et

2 |

.......................................

- ' e v » A4 RIS - - * a - ' m - » - -~ - - Y - . - " . e T - » -
RO CIE A B S, SR AT O NI SN SRS Ny *'-.'-\,"\*-J‘ S SN LT SO O St L O, L TN X £
. . a g A A= . -




Nancy Leveson i

0 ICS Department

: University of California i
Irvine, CA 92717

N (714) 548-7525 or (714) 856-5517

Dr. Timothy E. Lindquist LINDQUIS%ASU.CSNET@CSNET-RELAY n
Computer Science Department =
Arizona State University

Tempe, AZ 85287 2
(602) 965-2783 s

By oAy

{‘lf'\. DUENENR A

* Steven Litvintchouk SDL@MITRE-BEDFORD :
Mail Stop A1l80T vl
MITRE Corporation
Burlington Road ‘
Bedford, MA 01730 -
(617) 271-7753 v

:. 'l , ..‘J... " .

£
»

David Luckham LUCKHAM@SAIL o
Stanford University o
Computer Systems Lab, ERL 456
Stanford, CA 94305 <
(415) 497-1242 N

O ,{‘ .‘.. '('.',‘.‘;’. 2 ]
«

Dr. Glenn MacEwen .
Computing and Information Science ]
Goodwin Hall =~
Queens University

Kingston, Ontario
K7L 3N6 -
(613) 547-2915 or (613) 548-4355

QX

* Ann Marmor-Squires MARMOR@ISI |
TRW
Defense Systems Group
2751 Prosperity Avenue
Fairfax, VA 22031
(703) 876-8170

]
‘e
’
K

L
-

Eric Marshall PAYTON@BBNG
System Development Corporation

P.O. Box 517

Paoli, PA 19301

(215) 648-7223

a
. AN
. 7.

By

-
]

£

* Adrian R. D. Mathias RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850 e
(607) 277-2020 i

..
e
i A A

i ?' l(flli "L‘

I. 4
'a’

A.10 _ .

o
-
n
»
n

............




i

A ‘1_1

By %

' .

e >

x

Terry Mayfield

Institute for Defense Analyses

Computer & Software Division

1801 N. Beauregard Street
Alexandria, VA 22311
(703) 845-2479

John McHugh
Research Triangle Institute
Box 12194

Research Triangle Park, NC 27709

(919) 541-7327

Rudolf W. Meijer

Commission of the European Communities
and Telecomm. Task Force

Info. Tech.
A25 9/6A
Rue de la Loi 200

B-1049 Brussels, Belgium
‘PHONE: +32 2 235 7769

Donn Milton

Verdix Corporation

7655 0ld Springhouse Road
MclLean, VA 22102

(703) 448-1980

Warren Monroe
Hughes Aircraft Co.
P.0. Box 3310
FU-618/Q315
Fullerton, CA 92634
(714) 732-2887

Mark Moriconi

SRI International

Computer Science Laboratory
333 Ravenswood Avenue

Menlo Park, CA 94025

(415) 859-5364

LCDR Philip A. Myers

Space and Naval Warfare Sys.

SPAWAR 8141A .
Washington, DC 20363-5001
(202) 692-8484

Karl Nyberg

Verdix Corporation

7655 0ld Springhouse Road
McLean, VA 22102

(703) 448-1980

Command

A.l1l

TMAYFIELD@ECLB

A
y

L,
!

MCHUGH@QUTEXAS-20

2y

i gu Su e Be e Na S5 2N
Py
*

]
2
.
,
.

"’-

'y
‘e
o

RMEIJER@USC-ECLB

VRDXHQ'!DRM1@SEISMO

WMONROE@ECLA

MORICONI@SRI-CSL

MYERS@NRL-CSR

NYBERG@ECLB




Myron Obaranec

U. S. Army, CECOM

Fort Monmouth, NJ 07703
ATTN: AMSEL-TCS-SIO
(201) 544-4962

Frank J. Oles

Thomas J. Watson Research Center
P.0. Box 218

88-K01 Route 134

Yorktown Heights, NY 10598

(914) 945-2012

Mahmoud Parsian

SDI Inc.

P. O. Box 4283

Falls Church, VA 22044

Diana B. Parton

The MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7754

Don Peters

Comm. Sec. Establishment
Dept. of Nat. Defence
101 Colonel By Drive
Ottawa K1A OE2 CANADA
(613) 998-4519

John Peterson

DoD Computer Security Center
9800 Savage Road

Ft. Meade, MD 20755

(301) 859-6790

Joseph E. Pfauntsch, MS 29A
Ford Aerospace & Comm. Corp.
10440 State Highway 83

Colorado Springs, Colorado 80908
(303) 594-1326

Richard Platek

Odyssey Research Associates
408 East State Street
Ithaca, NY 14850

(607) 277-2020

.12

LAKSHMI@CECOM-1

DBP@MITRE-BEDFORD

PETERSON@TYCHO

JEP@FORD-COS4

RPLATEK@ECLB

19

‘

Sy
R

Yy «i
+

N

Lo
I.J' y

€.

9.

L

ABPIRA,

R AR
£ .t 1]

* Y S




Erhard Ploedereder
Tartan Labs

411 Melwood Avenue
.I Pittsburgh, PA 15213
~ (412) 621-2210

.-:.. -

) * David Preston
‘§§ IITRI

5100 Forbes Blvd.
. Lanham, MD 20706
. (301) 459-3711

Sri Rajeev
W ATET Bell Laboratories
- Room 1-342
190 River Road
- Summit, NJ 07901
o (201) 522-6330

- * William D. Ricker
- The MITRE Corporation

ke M/S K229

. Burlington Road
o Bedford, MA 01730
- (617) 271-3001

- * R. Max Robinson

i Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311

(703) 845-2097

¥W. A. Robison

! 30 Charles Street West
W Apt. # 1811

Toronto, Ontario, CANADA
., M4aY 1R5

o (416) 925-0751

. * Clyde G. Roby

o Institute for Defense Analyses
=" Computer & Software Eng. Div.
Alexandria, VA 22311

(703) 845-2541

tre’

Ken Rowe

DoD Computer Security Center
9800 Savage Road

Ft. Meade, MD 20755

.-
‘r:l ha

PLOEDEREDER@TARTAN

DPRESTON@ECLB

IENP4 ! ATTUNIX! RAJEEV@BERKELEY

WDR@MITRE-BEDFORD

RROBINSON@USC-ECLB

CROBY@ECLB



John Rushby - EL393 RUSHBY@SRI-CSL N
Computer Science Laboratory

SRI Internatiomnal . "
333 Ravenswood Avenue:

Menlo Park, CA 94025

(415) 859-5456

T
T e sk

* Mark Saaltink SAALTINK@MIT-MULTICS v
I. P. Sharp Associates
265 Carling Avenue @
Suite 600 N

Ottawa, Ontario, Canada K1S 2E1l
(613) 236-9942

Marvin Schaefer SCHAEFER@USC-ISI -
DoD Computer Security Center

9800 Savage Road ’

Fort Meade, MD 20755-6000

(301) 859-6880 or (301) 859-6818

'y

I . "R "X VI IRy FrFr7rFysrs-

Mike Schwartz UCBVAX ! HPLABS | HAO | DENELCOR !
Mailstop L0402 ALUVAX ! MMADVAX ! SCHWARTZ@BERKELEY
Martin-Marietta -
Denver Aerospace -~
P. O. Box 179 <t
Denver, CO 80201

(303) 977-0421 .

Dev Sen
STC IDEC LIMITED o
Technology Division o
Six Hills House e
London Road
Stevenage ¥
Hertfordshire S61 1YB ENGLAND o
PHONE: 011-44-438-726161

Jerry Shelton VRDXHQ'! JHS@SEISMO .
Verdix Corporation

7655 01d Springhouse Road
McLean, VA 22102

(703) 448-1980 =

Brian Siritzky (212) 460-7239 SIRITZKY@NYU-ACF2 or o
Dept. of Computer Science ...CMCL2'!'ACF2!SIRITZKY -
Courant Institue of Math. Sciences
New York University

251 Mercer Street

New York, NY 10012

........



Roger Smeaton
NOSC, Code 423
San Diego, CA 92152
(619) 225-2083

Michael Smith

ICSCA

2100 Main Building
University of Texas
Austin, TX 78712
(512) 471-1901

Ryan Stansifer

Odyssey Research Associates
408 East State Street
Ithaca, NY 14850

(607) 277-2020

David Sutherland

Odyssey Research Associates
408 East State Street
Ithaca, NY 14850

(607) 277-2020

Steve Sutkowski

Inco Inc.

8260 Greensboro Drive
McLean, VA 22102
(703) 883-4933

Michael Thompson

Astronautics Corporation of America
P. O. Box 523

Milwaukee, Wisconsin 53201-0523
(414) 447-8200

Friedrich von Henke

SRI International

Computer Science Laboratory
333 Ravenswood Avenue

Menlo Park, CA 94025

(415) 859-2560

Barry Watson

Ada Information Clearinghouse
IITRI

Room 3D139 (1211 Fern St., C-107)
The Pentagon

Washington, DC 20301

(703) 685-1477

A.14A

----------- .

A 4-:"-:"'-:’-\."4'."

SMEATON@NOSC-TECR

MKSMITH@UTEXAS

RPLATEK@ECLB

RPLATEK@ECLB

INCO@QUSC-ISID

VONHENKE@SRI-CSL

WATSON@ECLB

.........

v re

4

"

v s
Ay

r
.

e v ey
’l‘l‘l

(]

LY

e XA

ey ¥
:

L

SRS R

“wr Y T ¥ 00
» et}

AR P

. e e e e
| SO RO
v BT A
- B

SN N |




' h < S ¥, ha
&
h:.
A (B
i Doug Weber RPLATEK@ECLB 2]
Odyssey Research Associates b
: 408 East State Street ;
! ~ Ithaca, NY 14850 =
(607) 277-2020 e
@ * Steve Welke SWELKE@ECLB o
, Institute for Defense Analyses o
Computer & Software Eng. Div. 2
r. 1801 N. Beauregard Street .
L+ Alexandria, VA 22311 Y
: (703) 845-2393 44
~ ,/-‘."
o Col. William Whitaker WWHITAKER@ECLB oy
L VIS/JPMO/ADT D,
_ 7726 0l1ld Springhouse Road
o Washington, DC 20330-6600 3
A (202) 285-5065 e
g * Jim Williams JGW@MITRE-BEDFORD S
EE MITRE Corporation N
Mailstop B332
Burlington Road 353
Bedford, MA 01730 e
(617) 271-2647 O
S
Jim Wolfe JWOLFE@ECLB 5
Institute for Defense Analyses
Computer & Software Eng. Div. ' o)
1801 N. Beauregard Street X
Alexandria, VA 22311 e
(703) 845-2109 o1
".I\
Larry Yelowitz KLY@FORD-WDL1
Ford Aerospace and Comm. Corp. e
Western Development Lab. Div. N
Mailstop X-20 DX
3939 Fabian Way o
Palo Alto, CA 94303 ox
(415) 852-4198
“ g
Christine Youngblut CYOUNGBLUT@ECLB . e
Advanced Software Methods, Inc. Y
17021 Sioux Lane N
Gaithersburg, MD 20878 hi
(301) 948-1989
\.
S
F
Y
\
TN
A.15 N
R
)
e




............................

T * Margie Zuk MMZ@MITRE-BEDFORD 2
Mailstop B321, Bldg B :
MITRE Corporation
Burlington Road !
Bedford, MA 01730 »
(617) 271-7590

L Sl

"y "
.
' s,

’ e

i
%

.........

S A A T N . T S AT,
*I.\.... e "."n"-ﬂ"{'\' -.'_\ PN ~',‘.". . S .',"_ P ,"._:,.“. SRR '_-I.‘ ORI '._ . .‘.‘ o ’

(]

NPT

YR L



APPENDIX B

Documentation from the European Efforts

The papers found in this Appendix were provided by the
Dansk Datamatik Center (DDC). Since Kurt Hansen of DDC was
unable to bring sufficient copies for all attendees, the Dansk
Datamatik Center has allowed IDA to reproduce and include these
documents as part of the Proceedings.

f.r.' rA:..'
-'f"f;i

LA

"o

ALY
o
-

P " e 0 e o
%% “a
a2 SONE

I
4
PR

P
,-&

B-1

DT T
e e .

e e e e e '-.‘ "_‘-.' N T R ) o .= .
\’h X i I < ,. LR d'i'u, ERE “.." 2%, ".’ J“N.\" P e,



T Ty

ind

e o 4

bt S A

NOTES




NOTES

OO  RARNVND | OAGO0OOT  SMAEDRCY |

Vai el Sy Gl Oyl @l

, v
. P ] rl) , ' *x
o S e A I PLPLTLTRY e ta’s e s’a "0 s

Be i SR At BRI SRS | AU at

SARSSC (SERRATE I




IR S el LM e e e S AL R b e g en atet AAntat A - A A Ay B Y W Ly

| The Draft Formal Definition of Ada®

s
nls

o

-
% g " . 2
L Commission of the European Communities: Multi-Annual Programme

£,
[ " *

! Technical Annex

3

14 December, 1984, version 2 o

-
2 ]
W~ ]
Q) “
"l

m :
v o,
> i
..:'

Ll

.-
.
=

2
-

-« T,
P :
[Ba¥] ""t
L
&)
."¥
a®) ~
-" N ':

[

I3

s
.
o

B e

."’. '..:<
e
Vet R
0.";“
‘_‘
F h‘\“
A
O
£G4 :.
-~
. .
-:. ;'" N
» g -
LS ;f
A.‘. )
. - - -
B K
R S
[
ro G
B
L ]
h._'
h.-.
S

YYXy

XA

[ B e

¥

s

3-5

‘Ada 18 a registered trademark of the US Government (Ada Joint Program Ottice).

e
)

AR

N

Y /7 n"l'

e N T T e e et e P P St RO NSNS

s




o
v

I-2

Tl Table of Contents

Table of Contents:

xS
=

3

L'20

5.

i~ 6.

PrOject Title ® 6 5 5 0 0 0 0 ¢ ¢ ¢ 9008 S 0G0 s e s e
PrOjeCt smmary ® 6 8 65 8 0 80606060 00 0800000080000
Objectives ® 8. 9 2 5 0 0 2 60 2 0 5000000000000 00O Nt

Aims and Objectives with respect to the Mul-
tiannual Programe ® € 0 & 5 & 0 5 0 95 0 0 5 OSSOSO OO 00 0

Current State of the Art ....cccieecitcecrasacs
Project description .cccececececcccossccsccscans
6.1 OVerview cccceccsccssccccscccsccvsssveccons
6.2 Work Packages and their Interrelation ....
6.3 Management I8SBUES ..tcsvsscccccnscsccscsncacs
Financial Statements .....cccccececececccccnsass

PrOject Team ® ® 6 9 6 0 6 ¢ 0 0 C 08 0 CE OO E OO PN LN 0L s 00

I-7

1-14
1-18
I-17
I-17

I-41



¢
‘ Py . :
g o

“ VS Project Title
ol Aga '.“ g

Ve N
2
;J-_ S
- 1. Project Title N

"%

! The title of this project shall be:

“THE DRAFT FORMAL DEFINITION OF ANSI/MIL-STD 1815A Ada" w2

m’ .
» Y.
:';\ -~ hereafter referred to as the “Ada FD". e
< .q
ol -
Wi s
o r:'.-
AL
,"-, c“::-
- A4
A t':x
e '.-::
¥ o
1 .1 ._-'
P e
|
| i
o~ '.,\
.!' '--..h
‘P '.._\
._{ ‘
o "
i ’,-? .
- .::-'
<‘, .I.\
O ’:("
(94 s
) 3
.1:' N
l"..

- o w
- . ®
e g
" DX
Ve el

u‘*
-"'

NG
o
s . 'I..-‘
*._ PREV'OUS PAGE -.-,ﬁ
t-‘ IS BlLANK P --\ ‘
s N
N

e e e e e e et mtaa At m et ean . L L I T S O A SRS A N W A S A I
T A TN R P I A R R R AR AT A AT AL




Sw
¥
L)

-, The I _4
> o |
3 of Ada " Project Summary

3

2. Project Summary

The project aims at developing the draft Ada language formal
definition, the Ada FD.

The task will be completed using state-of-the-art techniques
in formal specification methods. Different specification ap-
proaches will be carefully studied, and the most promising
methods will be chosen.

The project is foreseen to progress as follows:

- A "difficult" subset of Ada will be selected,

- a set of combinable specification techniques adeguate
for the definition of full Ada will be tentatively
selected, and

-~ a trial definition will be developed.

- The trial definition will be evaluated, and on this
basis

- a full scale draft Ada formal definition (the Ada FD)
will be developed.

- In parallel, annotations of the Ada FD will be devel-
oped.

- Extensive cross referencing to the Ada standard docu-
ment (ANSI/MIL-STD 1815A) will be developed.

- The work on the Ada FD, it's annotation, and correlation
to existing reference manuals will be reviewed on a
regular basis.

- Tools for manipulating the Ada FD will be developed.

- mappings from the proposed Ada FD to the NYU SETL
interpreter for Ada, will be documented, as will

- a study of the feasibility of automated verification
of the ACVC test suite with respect to the Ada FD.

- Finally Educational Issues will be addressed.




......

E " :

Objectives AN

5 N
e Uy
v '.:.
It must be emphasized that the completed Ada FD will define 3

! the Ada language as found in ANSI/MIL-STD 1815A (Revision

by January 1983). Whereever this latter might be inconsistent,
incomplete or ambiguous, the produced Ada FD will leave the &'.‘_'

E“ subject undefined.

u,

‘r;‘

D%,
- e
iy .
., S
N
e .-,
‘c‘:' e
2y o
.
-
. - -
. -
- ‘.
-.hhn
., o
R -
-
L2
&3
o
- ..’
1’-: .:_'.
[ %
s
S
o t.
Lt e .
| .
Y -
[
0 -
"~
v o -
e S
- LS A -
a7y i
(. ‘,. -
¥
‘l
5
L.
.\ --~~
LY e ®
'-.. c-_.-
Fh .
-
<
-.- -
-‘:‘v
.’--w
.
"_‘- U
(3 L .
(39 »,
o )
-
¥
e, ‘._:.
v, RN
L] LN
e, I
» IR
l.‘
o
-
Lol

A
[ SN
v

4

- l'
»
Y

'.‘J.-'.
OISR
l. l‘ 'l-'

" ‘l'

’

m
2
[
[
=]
}




-

O'eggltlon
orac Objectives

3. Objectives

The main objectives of this project are:

- To obtain as concise a definition of the full ANSI Ada
language as is today feasible, in a form which

(0) may serve as a reference for questions on Ada,

and is suitable for further research on the following
topics:

(1) formal work in the areas of proof systems for Ada
programs,

(2) correct development of correct Ada interpreters and
: compilers,

(3) the meaningful generation and verification of Ada
test programs, incl. validation of the ACVC test
suite, and

(4) the derivation of informal, but precise, unambiguous
Ada reference manuals for various user groups,

in order to help provide:

(5) input to the ongoing standardization work on Ada, in
particular to support the ISO future review of the
Ada standard, and

(6) a worthy, broad, and commonly accepted candidate for
the formal definition component of a future Ada ISO
Standard.

- And to further the propagation of Ada, as well as teach-
ing professionals how to read, understand and use an Ada
FD in their present position.

Subsidiary objectives are:

- To help unite various approaches to the informal, and
semi-formal descriptions of Ada (by studying, how to
relate the proposed Ada FD to e.g. the NYU SETL inter-
preter for Ada)

- To further develop and research engineering methods
suitable for the precise definition of large, complex
software systems (by calling on a wide community of
computer scientists to take part both in the actual Ada
FD development, and its review), and thereby

- To further propagate the use of formal methods in soft-
ware engineering.

! |

3
T

"

M a s &

— . el




* \ﬁ’_-.

.t Aaa
N Aims and Objectives with Respect to the
{2 Multiannual Programme

;"‘.’ ~ )

A NA

»

4. Aims and Objectives with Respect to the Multiannual
! Programme

The following is quoted from TF-TIT/2472/84-EN rev. 3, start
Pg.36:

R
A
2y 5 p

L AARARAS S

T
-

“3. Formal Definition of Ada

B

. 3.1. Background

Work on a Formal Definition (FD) of Ada is of prime im-
portance for the rigour and stability of the Ada Standard.
= Eventually, a completely formal description could be the
X prime form of any programming language standard, with a 3
o narrative definition and validation test suite as comple-
ments. However, even though the main mathematical forma- -
. lisms to cover the important aspects are probably avai - T
o lable, combining them effectively and applying them to Ay
G the concrete case of a language as comprehensive as Ada 4
is a matter which still needs development. Part of this -
work will be for tools that help to make the description Ny
- more tractable, and hence more usable for a number of
D purposes: not only as a candidate for the ultimate lan- R
guage standard, but also as a basis for derivation of 4
e correct compilers, and for reasoning about properties of =
. Ada programs. Another aspect is that of making the de- -
scription executable, so that it would be used to process
the Ada validation test suite, and Ada programs in general.

T 7

Work on a FD of Ada cannot proceed in isoclation: it needs
to recognize first of all the existiang standardization

! effort and their revision cycle. The work of ISO TC97/

o 8C5/WG 14 "Ada" has just begun (first meeting 10-11 April
1984). At the first meeting it was confirmed that the

- basis for the initial ISO standard shall be the Ada Refe-

o rence Manual, and that a formal description is not consi-
dered at the stage. In fact a separate working group ISO
TC97/SC5/WG 16 "Guidelines for the development of standards
within SC5" may at some stage address the usage of a for-
mal description for standardization of programming langua-

) ges. Thus any FD project should at least establish liaison

e with WG 14 and WG 16. Other standards liaison, e.g. with

.,
L3

TR
v’s 8, s, 4
a3 b b te le G

oee,
'."f u""'

2 s D

- ANSI and ECMA, may also be useful.
5 There is a possibility that the US will fund some work
t? on the same subject. In that case a collaboration could

be envisaged, most likely in the form of independently
- funded, but complementary projects, which have a large
ii measure of mutual cognizance.




_______________________

‘, z Dran 1-8 "2,
Formal
Definition . . ] ] .
of Ada Aims and Objectives with Respect to the

X Multiannual Programme

3.2 Guidelines for the Formal Definition Project(s)

The following guidelines will apply to any project pro- 2
posal under this heading. They are for a large part based

on the advice given by the Ada-Europe working group on T
Formal Semantics of Ada, which has held intensive discus- L
sions on this subject over the past one and a half years." -

The above quoted section is in close harmony with what the ?: :
proposers of this project believe. o
In order to show that the project complies with the aims and ol
- objectives of the multiannual programme, we have numbered and L
quoted the EEC requirements below -- together with our plans
on how to fulfill them.
N l. “All proposals shall contain details explaining on what
. basis and to what extent the approach(es) put forward can e
be considered "formal"." )
-
S Definitions can be expressed in various styles:
- Systematic: The gross outlines of a 'formal' specifi-
cation method is followed ~-- using some
" informally explained specification langu- .-
. age(s), n
- Rigorous: and certain, or all relevant, but not
necessarily all aspects of, properties o
3 of this language and of the constructed NG
. specification are ‘formally' expressed,
m
- Formal: and ‘'formally' verified or defined. -
In the previous three paragraphs the word ‘'formal' has been
used in the sense it is used in mathematical logic.
i It is here tentatively being proposed to split the Ada FD
into basically three parts: "
. - Static Semantics: dealing with all the statically - "
decidable properties that any Ada program must sa- -
tisfy, and which a compiler is specified to check. N
> -
- Dynamic Sequential Semantics: dealing with the run-
g time, action, or execution semantics of all but the K¢
X tasking aspects of Ada. D
X - Dynamic Parallel Semantics: dealing almost exclusively - .
with the time-dependent, and tasking aspects of Ada. i'

B-13 !

e

Sy 2,0,
{.4.nl-'fl""'.- D
» 2’ ot



% py 1-9
“ "+ Aims and Objectives with Respect to the
E‘; Multiannual Programme N
%
This split has been chosen for pragmatic reasons, and is -
. motivated below. n
B AT
It is further being tentatively proposed to define: S}
o Y
;3 - Jdeterministic aspects of Ada denotationally, :;
- - non-deterministic, but not concurrent, aspects of Ada "
g axiomatically/algebraically, and by
v ‘*n'
) - concurrent aspects of Ada, i.e. Ada tasking, struc- 5;
'3 tural operationally. e
e, . AN
In addition we may find it desirable to express certain
o absolute, or relative, partially ordered, time-dependent Y
o features of Ada using temporal, or interval logic. ol
" [ARS
. For the denotational semantics we propose to choose, as our }ﬁ
W departure point for a fully, formally definable specification N
language, that of VDMs META-1V, but with additions and re-
strictions, henceforth referred to as ML4. e
= In the static semantics a simple, applicative subset of ML4 'fi
will be proposed, and the definition will be a standard, o
. denotational semantics (non-exit, non-continuation style) o
ll model. Thus the static semantics model will be fully formal.
’ Y
) For the greater parts of the dynamic sequential semantics an pg
Q{ imperative version of ML4, using the so-called exit mechanism, gt'
™5 will be proposed, and the definition will be a denotational oA
model which can be fully, denotationally, i.e. formally Ch
explained. We propose to "decorate" the applicative ML4 with
gs imperative-looking combinators like statements, sequencing, .
and exit constructs, in order to render the definition more oY
. readable. It should be noted that the “imperative" combinators R
) are but a well-disciplined precursor to the "abstract semantic if'
e algebras" of e.g. Peter Mosses. In this sense our dynamic ot
semantics definition of Ada is fully formal.
E: The storage model of Ada: values, locations (pointers), al- jf'
location, assignment, and contents-taking, will be proposed <.
x expressed in a style reminiscent of the CLEAR or ASL algebraic R
o) semantics specification language. Other, minor parts of s%;
- “sequential" Ada may likewise be, and in cases, alternatively,
. rather than only exclusively, algebraically defined. To the o
(e extent, these metalanguages are formal and combineable this o
[ definition will be formal. A
. :’\)
. The definition of Ada tasking is here being proposed to be 'Qi
defined using the SMoLCS derivative of structural operational '
semantics. ey
"f\ :
- LNy
ot (RN
E*: AN
5

FNRR T

LA e

......
.

Al



% Yot

Ak oy G N A

g A
[ PAPRFRE A A

Fr ol

PO

Tne
Oratt

Pomaon Aims and Objectives with Respect to the
ot Ada Multiannual Programme

Since SMoOLCS can be expressed in an algebraic style, using
ASL, it turns out that the definition of Ada tasking can be
made technically similar to the algebraic style mentioned
above.

It will finally be attempted to give the combination of the
4-5 specification parts a formal explanation. This may be
done either "absolutely" (ideally): with respect to the
underlying specification languages, or “relatively": with
respect to the actual, resulting Ada FD. To the extent that
this can be expressed formally, the whole Ada FD is formal.
To the extent it cannot be properly formalized, the Ada FD is
only rigorous. We believe that it is feasible to express the
“relative" meaning of combining the specification parts.

2. “"Review procedures shall be incorporated in that workplan
as an integral part of the effort, in order to promote
acceptance of the results; the problem of liaison to the
User Community shall be addressed."

A document: "The Rdle of the Ada FD" will be proposed. It
will define the uses and user groups of the Ada FD. On the
basis of such an approved document a suitably large list of
representative users from each of the groups, and from Europe
and the US, will be established. The user groups will review
the ongoing work in two forms: write-in reviews in response
to broadcast mailed reports, and meeting reviews where the
Ada FD project partners present their ongoing work. An Ada FD
review board, set up independently by the CEC, will negotiate
with the presently proposed project partners on any discre-
pancies there might arise. None, of the above mentioned re-
views are funded by this project, except for contractors
part. It is also pointed out, that the review is essential,
but it is the responsibility of the contractors, to formulate
their further actions in view of the review outcome.

3. "The FD shall base itself on the results of existing work
as far as possible; this includes the incomplete (out-of-
date) descriptions by INRIA (F), and DDC (DK): the work
at NYU -- SETL (US); as well as the Karlsruhe attribute
grammar (D)."

The work will start from scratch, but based on the current
state of the art, both in formal methods and in Ada formal
definition work.

The main contractor of the project has completed a rigorous
definition of Ada using the VDM approach, and intends to
build, not only on that work, but on some of the people who
dig it.

It is also included to study rigorous analyses and mappings

A
4 Lt

1

¢

.




g ” ) I-11
““3'13.—?"' Aims and Objectives with Respect to the
Multiannual Programme

N

LA

L

L AR

from the Ada FD to the NYU SETL interpreter for Ada.

Since the INRIA work is basically using the same denotational o
approach as will the presently proposed Ada FD, one can say &
" that it will also incorporate the INRIA work. But since this
%\ latter reflects a rather early attempt which did not define
- anyway near the full Ada (minus tasking and storage), and at o

a stage where Ada was rather different from what it is now, =
!} one may claim that we are not proposing any explicit mapping o)
'\ from the proposed Ada FD to the INRIA work.

£
r.

4. "The FD shall be developed using reasonably few and con- ;Q
cise methods, which shall be uniformly applied to the s
whole language. The theoretical foundations for the

) combination of several methods shall be given, and proof by

) and verification theories for the FD shall be developed."

..'J

We refer to the remarks made in connection with point 1 above. A

W One may claim that the proposed number of different specifi- o3
B} cation methods does not satisfy the "few" criterion. It may -
certainly be possible, but, it is felt, not entirely desirable, N
to cut down on the number of different methods. First we could, W
e.g. give constructive, denotational models for storage and ‘
the other nondeterministic features of Ada -- and that should )
_ indeed be considered. Secondly one could, both theoretically, \
ii and practically, express all of Ada in one style, using either
of e.g. de Bakkers, Tochers, or Plotkins specification me- "

thods. This world solve the “combination" problem, but not the -
accessability (readability, and conciseness) problem. We there- e
8 fore maintain the presently proposed approach. -

-

P
LA A
s 8

S. “The FD shall not be unduly constrained by the necessity

- to describe certain concepts like representation clauses,
- implementation defined attributes, and some pragmas. v
However, all possible effort shall be made to integrate

-L these concepts.” K

An attempt to express some of these aspects will be made, and
A it is here suggested to do so axiomatically -- and orthogonal-
. ly to the remaining, complete and consistent Ada FD.

6. "The FD document shall be coordinated/integrated with the .

fa existing Reference Manual."” el
This is a very important point, and is described more de- b

3 tailed in the description of work package R, pg. I-35. f
O., -
S b
' 7. “The FD shall be the source of derived documents for A
a &

.

5 =
\'._

»
'!. 3-16 \..
fiﬂ&;@gﬁi#ﬁﬂﬁéfé}§{?}“"-”3"'  i ey e e A e U N



Pt
-
|
—
N

b Drgft . _‘_‘
zm{m Aims and Objectives with Respect to the [}
- ot Ada Multiannual Prog.amme
¥
3 “
b a variety of user interests and needs; for example, _ e
the FD shall be suitable for the verification of proof
rules for Ada programs. ]
ot
: Work packages P and R, pp. 33 & 35 outline our proposal in
e this area. We tentatively define three groups of users of o
) such documents: AN
'\ »2
\ - Ada text book and reference manual writers, and Ada -
# language educators and teachers -- and, through them, i
N ordinary Ada programmers, o
2 - Ada programmers interested in proving their Ada programs o~
- correct, and 3
- Ada compiler and interpreter implementors. -
7 g
o For the first group derived documents should describe Ada in T
s natural language terms, in a tersely, and Ada FD related
’ manner. See work package P, pg 1-33, for more details. “
[
- For the second group the derived documents should consist of
- informally annotated, formal proof rules, and preferably .
N guide lines on their use. 2
ta
: For the latter group a derived document could outline the .
methods that can be used to derive correct interpreters and i
A compilers from the Ada FD. Since the literature, by now, is =
2 fairly full of such information this will not be proposed
- done in this project. o
- 8. "The FD shall be suitable for the validation of the ACVC =
/ test suite. An effort shall be made to provide means for A
. mechanically testing the ACVC against the FD (e.g. by e
: having an executable FD, or making an executable version
N automatically derived from the FD by a tool)." 5;
~ -
> In this project alternative approaches will be studied:
- indirect executability, as above, via studies of N
X mappings to the NYU SETL interpreter. Work packages o
~ Q pg 34, will study this aspect. ,
X - proof of the ACVC program incorrectness/correctness 2
Work package S, pg I-36, will study this aspect.
~ A
; .

e

L
s

L
'

B-17 !

N -
e e e e e -.. AN
;-_\'s [ \""\. » 4 s‘:.n.




) ) 1-13 - ' :::

'y ” (]
h uu © Aims and Objectives with Respect to the ‘
. Multiannual Programme %

o
i 9. “The development of the FD requires support tools to N
: manipulate the FD document and to coordinate it with the %

. Reference Manual." =
iy

g This task is taken care of by work packages N and O, pp kY
~n 1-31-320 .\:L
."- :f
- 10. "All tools will be developed as (M)APSE tools." 4

m Yes. .

Ve -
‘... -.. !
.~. 3
.-l .- i
"t '-.
~ "
- '.:-
v\-l '. -
r0
- s
- -~ ...
R
&
P »
o >
c“ ..
R A
-

-
. :‘;
ey -
a .
'I
-
A «-
u--' M .L
-..-
-
I w
o 1
i o
. 0
. 2
o
. P
l‘ . * o
'~ A
A
Y
*'v ‘e
~ Be
_ "
-
R .’
to
ﬁ “
.". . *
t.
D .
l."
n
" B-1c |
" B
‘e
K
P TN TP TN A A TP L e e : el Tt T T s AT R 4
I.~("-..‘.’.-I.'q. - ‘,_f oo XS .‘-;_- '-"\. N ‘n"- T 1'\-_ Q) .‘.\ \-. VT TR CS \. R -"\- RG0S .".$ RN WP ARG DA S '
A o o ~ - N NSl ol y 3 o




The

Oraft
Formal
Definition
of Ada

L D ] - v -~ - . » X AR . . . -~
vl m. X ﬂ!& —U ) ST * o i ,.....-. WA u! S '..a.u .....r.;& o ..“_- P .s... N .—..
.  Ca P - Pl i) 2

B-10

r LR LA

e d - e . ) L) [ .
B Ly v

A% e NG Ny v v v e e e ey e Cevitte -
s A VYRY. | PIRAAARS. O MBS WX -0 % A" Pl SO W W



I-14

A

Current State of the Art RY

P

5. Current State of the Art -

-
3

It is widely recognized that software engineering, unlike the

more established engineering disciplines, is still largely at oy
o the craft stage in that the techniques in common use lack an <
W underlying scientific basis. In particular, the early stages ~

of the system life cycle (regquirements analysis, specification
and high-level design) are rarely treated in a disciplined .
way by the software engineer. Yet, these stages are worthy of e
particular attention since faults generated here have been g
shown to be the most difficult to detect and the most costly o
to repair. The growing awareness of these problems has led to ?i
S the development of formal specification and systematic deve- "

lopment methods based upon recent advances in mathematics and
computer science.

X ;rl‘
L

-~

¢ v

In recent years there has been intensive research and deve-

. lopment of a variety of approaches to formal specification -
e and systematic program development in a number of centres,
K principally in Europe and North America. A large number of
real and laboratory applications have by now been carried out e
-~ and, at least for non-concurrent aspects of systems, a consen-~ .
- sus seems to be emerging regarding the desirable characteri- ]
stics of such approaches. Experimental toolsets to support

these approaches have also been developed and used on real o

. projects.

. An ESPRIT preparatory study has been carried out in this area _
Rt by the Dansk Datamatik Center (DDC) and Standard Telecommuni- T

! cations Laboratories Ltd (STL). The report of this study is -
in two parts. The first part is a broad survey of the state el
of the art in formal development theories, methods and tools,
- comparing the situation in Europe, the U.S.A. and Japan. The w1
' second part is an in depth evaluation of one particularly “ﬁ
i well-established method, VDM. This study provides probably >
s the most extensive and up-to-date view of the field addressed >4
< in this proposal, but other useful surveys of development '

methods in general (not just formal methods) are available,

L for example, the DOl Study of Ada-based System Development -
Y Methodology the ‘Methodman’ document for Ada and the survey
of Software Tools for Application to Large Real-time Systems
-~ (the 'STARTS' guide). N

In the past, the principal approaches to formal methods have
been characterised as "model-oriented" or "property-oriented".
N In the model-oriented approach, specifications and designs fe
A are explicit models of systems constructed from well-defined e

primitives. In the property-oriented approach, specifications X
W are given in terms of axioms defining only the relationships Wi
ii of operations to each other (as in, for example, the so-called
“algebraic" approach).




The I-15 -

Oraft [y

Formali .
zgfgg';m Current State of the Art g
ol
.“"' N

b

Important centres of research and application in the model-
oriented school include the Dansk Datamatik Center, the ~

University of Manchester and Standard Telecommunicaticn e
Laboratories (for VDM), SRI International (for HDM), USC
Institute of Information Sciences (the GIST project), the
University of Oxford (for 2Z) and Higher Order Software Inc. .
(for the HOS method). LK

-

A

Important centres for the property-based approach include R
the University of Edinburgh (Clear), SRI International (OBJ, -
CLEAR), MIT and Xerox PARC (Larch), the Universities of Pisa

and Genoa, the Technical University of Munich (CIP), USC L
Institute of Information Sciences (for Affirm), the Technical b
University of Berlin, and the University of Passau. b

It is notable that the two schools now recognise attractive
benefits in each other's approaches and systems which attempt
to provide the benefits of both are increasingly being pro-
posed. Such ideas are evident at, for example, MIT, Oxford, e
Manchester, DDC, Xerox PARC, STL and SRI. i’ '

In the area of concurrency there is much less agreement on

the "right" approach and a large number of contrasting theo- Sj :
ries are being researched. These include algebraic approaches o
(e.g. CSP from Oxford and CCS from Edinburgh University), net o
theory (GMD Bonn), temporal and modal logics (Manchester 2.2

University, SRI, Stanford, etc.,) and label-event and SMoLCS -
systems (Pisa and Genoa). In September 1983, a workshop ;
organised jointly by the U.K. Science and Engineering Research K

Council and Standard Telecommunication Laboratories, STL, was 'f
held in Cambridge (U.K.) at which many of the leading research- ey
ers in the field were present and the principal approaches
compared. The forthcoming published proceedings will provide n "
valuable input for this proposed project. =

A number of attempts have been made to support some concur- o
rency features alongside established methods for sequential
systems -~ for example CSP with VDM (at DDC), temporal logic
with HDM (at SRI), the rely/guarantee condition extensions to
VDM (at Manchester) and predicate-transition nets (at GMD).

An ESPRIT pilot project (the GRASPIN project) is attempting I
to utilise Petri nets and axiomatic abstract data types in a v
coherent framework. However, in general, combining various - .
approaches based on differing semantic theories raises fun- .: .

damentally difficult problems; the issues involved in this

were explored in a NATO-sponsored workshop organised by the
Dansk Datamatik Center in May 1984. It was attended my many
of the leading experts on semantics. The proceedings of this
workshop will clearly provide valuable input to the proposed )
project. a

,"'l.‘ y



“ “ " Current State of the Art

A number of formal approaches have been supported by experi-
mental toolsets, some of which have been utilised in real-
world projects. Notable efforts have been developed at
USC-1S1 (Affirm), the University of Texas (Gypsy) and HOS
Inc.(Use-it). Database systems for specifications have been
explored at Xerox PARC (PIE). Notable work in theorem proving
has been carried out at SRI (Boyer-Moore), the University of
Nancy (Reve) and the University of Edinburgh (LCF), among
other centres. Significant programming environment efforts
have been carried out at INRIA (Mentor), CMU (Gandalf) and in
Japan (Iota).

It must be noted, however, that most of these toolsets are
experimental vehicles and could not be utilised directly in
industrial situations. (Exceptions are Use-it, marketed com-
mercially by HOS, and possibly Gypsy.) Considerable work is
required to develop tools capable of handling large-scale
industrial applications. It will clearly be necessary to
develop full scale database-oriented programming environments
based around formal methods. This highlights a gulf between
researchers and practitioners which must be bridged for any
method: the promising ideas emerging from research must be
proven in industrialscale case studies and packaged for
transfer and use in an industrial context. Relatively few
‘methods' have yet reached this stage of maturity which would
be characterised by the availability of significant published
case studies, textbooks and industrially oriented training
courses. (VDM is one of the most mature according to these
criteria.)

In terms of applications, the more established approaches
have been used on a significant number of real-world projects.
There appear to have been more of these in the U.S.A. HDM,
for example, has been used to specify and prove security on a
number of operating system kernels (KSOS, PSOS and SIFT).

HOS has been used on a number of embedded military systems.
Affirm has been used to specify and prove a security kernel,
various communication protocols and a military message switch.
Gypsy has similarly been used for message switching and for
part of an aircraft control system.

In Europe, the most widely used formal method in industrial
situations is probably VDM. VDM has been applied to a va-
riety of projects in a number of countries: Austria, Denmark,
the Federal Republic of Germany, the United Kingdom and Italy.
Applications include the development of compilers, database
systems, aspects of operating systems, and office automation
systems.

These formal systems have been tfied out in various app-

lications, among these is Ada. These studies contain
attribute grammar definitions of Ada (Karlsruhe), incon-

B-22




1-17

.Vhe . . . :E
Oraft

S‘.’_.'%"a' Current State of the Art =
¢ of Arc‘!glon -

~

- plete Ada (INRIA), DIANA-syntax, SETL executeable de- )
N scription (NYU), and the somewhat outdated DDC Ada FD. —

The latter is the basis from which the DDC validated Ada ]
N compiler is derived. ot

: The summary above of formal methods and Ada definition -
N will form a very strong base for a development of an Ada &
-, FD. Furthermore, current research will be incorporated

into the project - specially the ESPRIT funded RAISE (Ri-
' gorous Approach to Industrial Software Engineering) seems
N to be able to contribute considerably.

AN

'
ksa

Pl Sl Sl e 5
g g e e )

SR N 2 2
r
)

e

X

-
r

LA Ay
-f"
]

r.




$0 4l . cafedaf afkal ™ W " . A S I A i g Rl

S A M Gl b I A e I G SR AL BN B it el A S AN SR AN AL A N S
2t et S LR ~ » - A A .

” P I-18
dad-

Project Description P,

6. Project Description

o 6.1 Overview

This section provides an overview of the contents of this
proposal, and includes an overview of the deliverables.

T rod
LA

* vy v ¥ v v s

The proposed Ada FD project may be seen to consist of five

’ major categories of work:
) - Selection of appropriate, “difficult” example subset of
i Ada (xAda), selection of appropriate formalisms to be
o used in a FD of xAda, and the trial FD of xAda -- all this
intended for review and approval of general approach. 3

X = The actual draft FD of ANSI/MIL-STD 1815A Ada. g

-~ The derivation of a natural language description of Ada :
o from the FD, and their correlation to the existing ANSI A
W% Ada Reference Manual(s):; this category also includes li-

ason with appropriate standards organisations: ANSI, ISO, .
ECMA, etc. as well as preparation of educational type of
documentation. s

- Development of new, and adapting existing tools for the
i - manipulation of the Ada FD; and feasibility study of ACVC
' test suite validation from the Ada FD.

- Review of Ada FD and informal, natural language descrip-
tions and correlations ~- to be held at regular intervals
throughout the project.

Pt
'I
.

.
a8, 8 S %

~ B
’.'

The main deliverables will be:

A draft Formal Definition (FD) of ANSI/MIL-STD 1815A Ada

Py
[

b to the extent, that the standard is unambiguous and com- ,
- pPlete. Exhaustive annotations, and correlations to exist- N
_ ing informal reference manuals will be made. !

(S o

R - Evaluation reports arising from regular reviews. y

~, - Report stating the results of the study of ACVC validation ﬁ

> feasibility. :
) - Tools, written in Ada, and supported by an APSE, for hand- N

e ling the Ada FD, and prepared for the introduction of .

o possible proof systems and ACVC validation. A

*d

o™ uy
6.2 Work Packages and their Interrelation

- This section contains a detailed description of the project 3

' ﬁ: in terms of relevant work packages. -

3~24




Lo by 'l A ke R . A ek et ol & N s 1 At b Ahasatel 0 - ghe 'R, . . gk e loted Sl A s fon 4 LA AKA L

Tre - e
M Oraft 1-19 <
Formal .
Defimition N . :
: of Ada : Pro;ect Descrzptlon

{: s
\' 4
o Work Package
5‘ i
f Identification: A r
: Name: Start up -
. Purpose: Project initialization and liaison t
3
Contents: "
3 - -
R -~ 8Set up of tools, equipment, files etc. necessary for
X project management
’ - Establishment of contacts to other groups working =
. in the area (ANSI, ISO, ECMA, ...).
-\ - Construction of mailing lists and opening letters to
b potential reviewers and users of an Ada FD. 7
Requisites: pre: None
>~ post: WPs C-D "
o~ -
N Man Months: 1 -
N -_—
. Deliverables: Report 1l: Project procedures &
Report 2: Review Procedures
k- Report 3: Review Groups (Mailing Lists)
¢ o
K (|]) Review: Reports 2-3 f-
e E
? St
= -~
R =
K. (|) The reviews mentioned in this and the following work pack- ii
ages are external reviews, and is done via work packac V,
y pg I-39.




S Project Description

Work Package

Identification: B

Name: The RSle of the FD (Formal Definition)
Purpose: Defines the requirements to be fulfilled by

a FD of Ada -- identifies the various uses
such a FD may have.

Contents:

This deliverable defines the various user groups of an

Ada FD (incl. possible Proofs Systems for the Ada FD), and
the uses these groups may have of such a FD. Roughly speak-
ing the groups include (1) Ada programming language refe-
rence manual writers (and, through them, Ada programmers),
(2) Teachers of Ada programming, (3) Ada interpreter and
compiler developers, (4) APSE developers, (5) Computer
scientists interested in studying Ada related matters

(such as e.g. proof systems, formal validation, formal spe-
cification, etc.), and (6) International and national Ada
language standardization organisation members.

Reguisites: pre: None

post: WP E~-X

Man Months: 1l

Deliverables: Report 4: The ROle of the FD of Ada

Review: Report 4

o
-
o
-t
.-

PN
.

“
)

I

AT PR
o %%
-
A

2 KRy

£
'S

d. s I-‘l"l.l. .
S

IS
-

0l |

oy 8,



il "he . :;"
X zgég,:a' Project Description —
" Definition
. of Ada

! ’;.::
5 Work Package N
.

N Identification: C =
:;f Name: Tentative Specification Language

‘_ Purpose: Select a tentative specification language for E'.;T
1 a "difficult", example subset Ada (WP D), the .

specification of which (WP E), can serve as a
) basis for reviews and subsequent approvals. 5'3
3 Contents: '
: This WP will tentatively select the specification techni- ;:.
= ques to be used for the full FD of Ada. It is to be ex- =
pected that these mighfy include:

:f-' - Denotational semantics techniques for the specification <
- of the (sequential) deterministic aspects of Ada,
. - Algebraic semantics techniques for the specification of ﬁ’
- the non-deterministic (non-concurrent) aspects of Ada,

‘_I - Structural operational semantics (labelled event system)

ey techniques for the specification of concurrent aspects

a of Ada, following the ASL-SMoOLCS approach also this part

2 can be expressed in an algebraic style, and possibly i
- - Temporal (or interval) logic techniques for the speci-
L fication of temporal (time) aspects of Ada.
“ rl-
j{.': The chosen techniques will represent the main streams of -

established, international research in the area of speci-

" fication techniques. !
A Requisites: pre: WP A

. post: WP E s
- Man Months: 5

. Deliverables: Report 5: Informal Description of Trial Speci- :\
- fication Languages.
- Review: By WP F: Report 5 ¥
™
W ':.‘
_ o
3

",
e’




“'-“;,, Project Description o
"h. ‘.'
l".‘ ..-F
Work Package o
! Identification: D -
~ o
~
= Name: Example Ada subset selection G
[ h
ﬁ; Purpose: This "difficult" Ada subset shall serve as ﬂf
the basis for a trial FD, see WP E. b
N Contents: o~
» A representative, but specification-wise "difficult" sub- :f
= set of Ada is to be selected -- a subset illustrating all N
X relevant aspects of Ada, ie such which examplifies deter- =

ministic, as well as non-deterministic; sequential, as

' well as tasking; time-independent, as well as time-depen- th
e dent; static as well as dynamic semantics:; syntactic, se- Ny
mantic, and pragmatic aspects of Ada, and thereby also o

- the complexity of Ada. ii
' 'y
Requisites: pre: WP A "

_ post: WP E-X : )
¢ 7
o Man Months: 4 TN
.::f

Deliverables: Report 6: Example "Difficult" Subset Ada

g
o
|

Review: By WP F: Report 6 :y
» g':
4 Wi
< -
- \‘:

o
" .
-._' -\.

RS
- N,
S
.‘:, .
-,. ':'I
-—

D
>
\\: ~.

J :-’
. v,
¥

ce

a0,

Y ry.
.'n ‘s e ‘0 .', k

»
I.. .

o
s =

NS
R

PRI R GRSy _' o e e o T T I T L e T e e e e e (e .-,. .~..>_\ S _' el




M S ieg S bt At Mgl ALK Sl il Aelk D Mol A vt i e Sl albabihai i din A e Ty Y At e Se R e

I-23

The
Oraft

Defnition Project Description
of Ada

Work Package

Identification: E

'ﬁ Name : FD of a "“Difficult" example Ada subset.

N

ﬁ; Purpose: To show the feasibility, and appropriateness
o of the chosen formal specification method.

Contents: .

. A definition of the "difficult" example Ada subset, toge-
< ther with exerpts of an informal, natural language anno- .
~ tation of same, and its correlation to the ANSI informal e
reference manual.

The actual work will be done iteratively. 3 persons will o
- work simultaneously on up to three aspects of the Ada -
s language (deterministic, non-deterministic, and tasking).
g These three persons will submit early attempts, sketches,

drafts, for international review in order to guarantee i
approval.
:% Requisites: pre: WPs B-C-D f-
3 post: WPs F-N .
\l
Man Months: 12

H A

Deliverables: Report 7: Formal Definition of "Difficult",
- Example Ada Subset

a s

A

Review: See WP F




o '-,-“:” ,
i “ Forma Project Description

bl
"a
2 Work Package
b
\ . . Identification: F
Name: Initial Review and Approval
.\ Purpose: To set the stage for the full, FD of Ada, by ;
~ assuring that the chosen method is acceptable. 3
g Contents: ]
International advisory groups review the FD of the "dif- -
™ ficult", example Ada subset (see also workpackage V) 2
RS its derived natural language explication, and its correla- :
tion to the ANSI informal description.
r This work package (F) is separate from work package V, pg g
I-39, the general, ongoing review of ongoing Ada FD acti- p
vities.
h“
& Funding of this activity is not included in this project,

except for the contractor part.

Requisites: pre: WPs B-C-E 3
: post: WP G .
i Man Months: 1 . y

Deliverables: Report 8: Review of WPs B-C-E, conclusions and
propose further actions.

a r_ .
s 4
S

%

TR T AL R S

! Review: No

S

o

B :
03 :
l‘—'.

T

A -
?.Q‘ L
v :




The

Draft .\i-
Danition 1-25
¥ j of Ada
B Project Description -
A >
A9 .

Work Pack&ge

123 Identification: G

R Name: Final Specification Language &
Ry |
Purpose: Serves as basis (input) for WPs H-I-J-K-L -

. (Ada FD) and WPs N-O (Ada FD Tools). ~

N

Y Contents:
1:' "_.
o A complete description of the full set of formal specifi- "

cation languages used in the resulting Ada FD. This work

o consists of individual work of the specific denotational, .
3? algebraic, structural operational, and other, semantic :
= specification notations, as well as on the possibility of

2 their combined semantics. -
=i We refer to remarks made in the contents section of WP C. -
3 Requisites: pre: WP F .
b post: WPs H-I-J-K-L-N-0-X
-1

;. Man Months: 7 i
= Deliverables: Report 9: Final Specification Languages and

> Methods -~ a description of the
f; individual and combined semantics L
3] of the chosen specification langu- o
] ages and methods.

Review: Report 9 !..
." .
o
R 5
:‘; ..\
N 3
N

3

f B-31 s




% ”I| o Project Description

L5
P

. Work Package

Identification: H

VI

Name: Ground rules for natural language explication
t{ Purpose: To establish rules for the informal, natural

language explication of formal definition for-
mulas, and for the correlation to existing
Ada reference manuals.

57, ‘
Al

Contents:

- ldentification of rules for deriving natural language de-
= scriptions, or explications (explanations) of the Ada FD
v formula, and for the systematic correlation of the Ada FD
to the existing Ada reference manuals. This work is con-
cerned with "style". The target, natural language will be

english.
;k Requisites: pre: WP G
(%} EOSt: WPs P-R
Man Months: 1l

‘. "'c".-r. .

Deliverables: Report 10: Guidelines on Ada FD Explication
] Report 1ll: Guidelines on ANSI/MIL-STD 1815A
i Ada FD Correlation

Review: Reports 10-11.

" B-32

............

.. AN

AR G A G G R O L R R N A I R S



- -
- - 1
abhply

S

AR
R

LIP v

A

s

ALl N RO

The
Drart

Formal I-27
Definittion 2
of Ada

Project Description

Work Package

Identification: 1

Name: Formal Definition of Ada Static Semantics
Purpose: To establish a concise, formal definition

of all the statically decidable properties
of any Ada program.

Contents:
Two issues will be addressed:

- The design of an abstract syntax and a correlated
concrete syntax for the Ada language.

- The formal definition of the static semantics of Ada
using the formalism chosen in WP G, with respect to
the ANSI/MIL - STD 1815A Ada standard.

The work will be carried out in two phases of approximate-
ly equal lengths. The first phase results in a draft propo-
sal subject to an intermediate review. The second phase
ends with a review approved FD of Ada static semantics.

Requisites: pre: WPs G-R
post: WPs L-0-P-Q-R-S5-X
Man Months: 12

Deliverables: Report 12: The Concrete and Abstract Syntax
of Static Ada, and their Mutual
. Translations
Report 13: The Formal Definition of Ada Sta-
tic Semantics.

These deliverables will be issued in two ver-
sions:

Reports %12-%13: half-way, incomplete draft
Reports 12-13: final draft

Review: Reports %12, %13, 12, 13

e

~Ht

!_'1)“

P
[y
3

&

L

M

o,




Ry

gy |

I-28

Project Description

Work Package

Identification: J

Name: Formal Definition of Ada Dynamic Sequential
Semantics
Purpose: To establish a concise, formal definition of
the dynamic semantics of sequential and non-
deterministic (but not tasking) aspects of
the Ada language.
- Contents:

Three issues will be addressed:

Design of an abstract syntax suitable for expressing
the dynamic semantics of Ada -- possibly correlated
to the DIANA intermediate language.

A correlator to (translator from) the static semantics
abstract syntax language.

A formal definition of the non-tasking aspects of the
Ada language. This part may involve use of up to two
specification languages, a denotational for the deter-
ministic sequential aspects of Ada, and an algebraic for

the nondeterministic, exclusive of tasking, aspects of
Ada.

The work will be carried out in two phases of approximate-
ly equal lengths. The first phase results in a draft propo-
sal subject to an intermediate review. The last phase ends
with a review-approved FD of Ada dynamic sequential and
non-deterministc semantics.

Requisites: pre: WP G

post: WPs H-L-0O-P-Q-R-X

Man Months: 8

Deliverables: Report 14: Abstract Syntax for Dynamic Ada

and a Translator from Static to

Dynamic Ada Abstract Syntaxes.
Report 15: The Formal Definition of Ada

Dynamic Sequential Semantics

These deliverables will be issued in two ver-
sions:

Reports %14-%15: half-way, incomplete draft
Reports 14-15: final draft

Review: Reports %14, %15, 14, 15

B-34

.

.
s vy VT B

e
X

"‘l

NSRS

s ot 8 oL PR
’

+

ln "l {l."',"' '

7
)



....................................
..................

e I-29
raft . .
Definition Project Description

AR,

E .
s "2 T2
I'q

v

F

Work Package

.

Identification: K <

Name: Formal Definition of the Ada Dynamic Parallel .E

(ie Tasking) Semantics <

Purpose: To obtain a concise, formal definition of all -

y the tasking, ie concurrent and time-dependent .
% aspects of the Ada language. e

Contents:

Only one issue will be addressed:
) - The formal definition of the tasking and time-~dependent jf
: aspects of the ANSI/MIL - STD 1815A Ada language. The -
-, word formal means: to the extent, that the metalanguages ..
used can be combined formally. =
s - -
A The work will be carried out in two phases, as for WPs I-J.

. }:
o Requisites: pre: WP G-R .
post: WPs L-0-P-Q-R-5-X
. Man Months: 12 i

Deliverables: Report 16: The Formal Definition of Ada Dynamic
Tasking Semantics. g}
W
This deliverable will be issued in two ver-
sions: n
. .'P-
- Reports %16: half-way, incomplete draft T
N Reports 16: final draft .
LY . LS
: Review: Reports k16, 16 s
4
: 2

s e a s 8 A"
»
3

.......
.......



0,
E ” - I-30 v
““‘f&\?’,” Project Description \s
b
g3 X
Work Package &{
! Identification: L -
Y
. Name: Integration of Ada Formal Definitions -
A :%4-
) Purpose: To combine the three part Ada formal defini- R,
tion (as obtained in WPs I-J-K) into one co-
- herent, consistent, and complete formal def- b,
e inition (formal, as defined on page I-10) 222
-~ one which is suitably cross-referenced, “
. indexed and otherwise checked. 5
& Contents: =
".'"("
= Three consistency and completeness issues will be addres- i
- sed: {?
- Syntactic: among definition parts with respect to usage i;
of abstract syntax defined domains and function types. -
~ Semantic: between definition parts with respect to pre/ fj
post conditions of defined functions, whether putative- Iy
ly defined, as in e.g. denotational definitions, axio- o
matically defined, as in algebraic definitions, or re- ’
write rule defined, as in structural operational defi- S
nitions, etc. e
o
- Pragmatic: between the FD and the informal Ada referen- b
ce manuals. 5:
The Correlation of the Ada FD to the ANSI/MIL-STD 1815A &%
will have as its ANSI/MIL-STD 1815A component a document 5
which is divided into a number of chapters, "one per group ﬁ%
of language features". This integration work package will é;
collect the appropriate parts from reports 12-13-14-15-16 -
(by means of the Ada FD Tool set) in a form analogous to D
the ANSI/MIL-STD 1815A layout. o
Requisites: pre: WPs I-J-K ' ;ﬁ
post: WpPs I-J-K-0-P-Q-R-S5-X e
Man Months: 8 ;ﬁ
Deliverables: Report 17: The Formal Definition of Ada .
Review: Report 17 o5
=
o~y




4 I~

:r);r -

.

AR A % R R s,

Pl
s 2 A4

-" «

v

Draft
z Demition Project Description
ot Ada

Work Package

Identification: N

Name: Requirements for an Ada FD Tool set
Purpose: To establish the requirements that different

Ada FD user groups will put on a set of soft-
ware tools relating to the Ada FD.

Contents:

A number of portable, APSE-based software tools for the

creation, maintenance and diverse uses of the Ada FD can

be envisaged:

- editors: line, full-screen, and syntax-directed

-  a variety of pretty printers/displayers

- Ada FD syntax and type checkers, ie not checkers of the
syntax of Ada, but of the syntaxes of the Ada FD, and
the function types of its defined functions.

- interfaces to possible Ada FD interpreters

- interfaces to possible Ada FD based proof/verification
sub-system

- interfaces to possible Ada FD based ACVC test suite va-
lidators

In this work package a set of requirements are established
for such a tool set.

Requisites: pre: WP E (L)
post: WP O

Man Months: 5

Deliverables: Report 19: Requirements for a Portable, APSE-
based Ada FD tool set

Review: No

B-37

|t

S

Law

f
|
<
1

P B T D e




T 1-33 ]
e The :::
i gé‘r’:\an_ Project Description
Defirution 3
of Ada .i\
[GAS
'(4 :';:
0 Work Package e
! Identification: P 2
A
? Name: Informal Explication N
. — o
E: Purpose: To provide an english, ie. natural language 5:.
DA explanation of the Ada FD. “-
- Contents: T
v The Ada FD is necessarily terse, and expressed in a formal, :;}
R symbolic language. To facilitate its reading, and hence o)
. its acceptance and use, it is proposed that the Ada FD be S
- extensively annotated, in an english language, natural p—
. style. e
- It is expected that different user (target) groups will f?:
require different style explications -- the requirements -33
- for these will be defined in WP B. et
g A
= This work will be done with respect to (wrt) the individu- e
. al formal definitions =-- as developed in WPs I-J-K, rather Y
- than wrt. the integrated Ada FD of WP L. ﬁf
A
Requisites: pre: WPs H-I-J-K-L 0
i post: None at
) Man Months: 6 X
Deliverables: Report 25: An Informal Explication of the B
Ada FD -- an Introduction o
Report 26: An Informal Explication of the s
E Ada FD Static Semantics i
bR Report 27: An Informal Explication of the .
Ada FD Dynamic Sequential Semantics e
. Report 28: An Informal Explication of the o
s Ada FD Dynamic Tasking Semantics Nt
* Report 29: An Informal Explication of the A
g Ada FD Combined Semantics -
P'_‘. ":_
(- Review: Reports 25-26-27-28-29 o
\V-.
2
o =
-
N
R Y
N
-




Project Description

Work Package

Identification: O

Name: Tool set Construction

Purpose: To create a portable set of APSE based tools
suitable for a wide group of Ada FD developers
and users.

Contents:
This work package consists of:
- The FD of the architecture of an Ada FD tool set
The design of such a tool set
- ' The coding of such a tool set
We refer to the contents description for WP N.

The present work package will deal with the specific is-
sues of the Ada FD: i.e. those for which the tools speci-
fically know that the object to which they are applied is
the Ada FD.

This is in contrast to tool sets that might have been de-
veloped for (ancestors of) the specification languages
(META~-IV, ML4, SMoLCS, CLEAR/OBJ, ASL, etc.) used in this
project. Insofar as such (ie these latter) tools exists,
this project will adapt them to the Ada FD tool set,
thereby enlarging its scope and utility.

It is to be expected that certain tools already developed
by the contractors go into the above tool set.

Requisites: pre: (WPs G-I-J-K-L-N)
post: None

Man Months: 19

Deliverables: Report 20: Ada FD Tool set: Architecture.
Report 21: Ada FD Tool set: Design.
Report 22: Ada FD Tool set: Users Manual
Report 23: Ada FD Tool set: Installation
Report 24: Ada FD Tool set: Primer

Software: Portable, APSE-based Ada FD tool
set .

Review: No




m:.

o
11.'

Work Package

Identification:

Name:

Purpose:

Contents:

I-34

~Project Description

Q

Feasibility study: Mapping to the NYU SETL
Ada Interpreter.

To study the extent to which the Ada FD of
this project may be correlated to the exist-
ing SETL programmed interpreter for Ada as
developed by the New York University.

There are two semi-formal, near- or fully executable
models of Ada: the Karlsruhe (FRG) University Extended
Attribute Grammar (EAG) description of Ada, and the New
York University (NYU) SETL program interpreter for Ada.

In order validate to Ada FD, and in order to investigate
the possibility of letting either of these descriptions
serve as a basis for the ACVC test suite validation it
is necessary to establish, reasonably formally, a "map-
ping"” from (i.e. a correlation of) the Ada FD of this
project, to either or both these descriptions.

This workpackage will study a possible mapping to the NYU
SETL Definition.

Requisites:

Man Months:

Deliverables:

Review:

pre: WPS: Q-I-J-K-L

post: None

2

Report 30: Feasibility of a Mapping from the
Ada FD to the NYU SETL Interpreter
for Ada

No

.:’-.
o,

A
&

X

.‘
r s
-

AROARS N0k

W7

e

[}
r

[ co T
e e
-' e

4

*

. D |
R v Ve
- A a’ e LN R

'l'_‘.l<',L,I _f_l _"l_fl

PP -. _
. . . . .
NRRE PSRN S




AD-A172 747 PROCEED!IGS OF THE IDA CINSTITUTE FOR DEFEMSE ANALYSES) 3/4
IORKSHOP ON FORHR CU> INSTITUTE FOR DEFENSE ANALYSES
EX NDRIA VA W T MRYFIELD ET ﬂL NOY 83 IDA-H-133
UNCLASSIFIED DECL IDAH@30379 IDA/HQ-83-30579 F/6 9/2

HEINEE




e e

.

P

|- .-
Pt P

LIV TS,

AL e LY

e

K, YV ta s

Y

PR

‘dpo't,:

........

ca

o

Tve pt

L% A% 3 Aty w8 e st

=

g
12

R RRE RS

rrerEr
F
e

i

rEFEEEE
EEEE

6y ah. Aty #E

r

f =
E

lie

»Y, A% can

AR R RO OoTE

DT

XA

. gy -




»

2% s N

a8 3 5 8.4

e s a A a4 &L

Formal
Definition

ora 1-35 (&
o n
ot Ada Project Description

Work Package

]
Identification: R i
Name: Correlations between the ANSI/MIL-STD 1815A X
Ada Informal Definition and the Ada FD. i
Purpose: To correlate the existing informal and the -
resulting formal definitions of Ada. =
Contents:
It has been suggested that eventually the ISO will adopt i:
an Ada standard which consists of two parts: an informal,
and a formal one -- much the same way as the CCITT has both
an informal and a formal definition of the CHILL language.
Also, to avoid, i.e. to attempt to alleviate (as far as .
is possible for pairs of informal and formal definitions) ~
discrepancies between these, a systematic attempt must -

be made to correlate them.

Finally such a correlation also serves to make the Ada ‘5
FD more accesible. ’

The work consists of producing two pairs of annotated do-
cuments, both electronically maintainable: one, derived
from the Ada FD, which correlates its formulae to the ANSI
/MIL STD 1815A document, and, another, derived from this
latter document, which correlates its sentences and para-
graphs to the formulae of the Ada FD. Both these documents
may need further, generally explicative notes.

A

b

"
Requisites: pre: WPs I-J-K-L =
post: None (I-J-K-L (1)) .
“7
Man Months: 4 -
Deliverables: Report 31: An ANSI/MIL-STD 1815A Ada Refe-
rence Manual to Ada FD correlation. o
Report 32: An Ada FD to ANSI/MIL-STD 1815A i
Reference Manual correlation. -
K
This deliverable will be issued in two stages: ]
%31-%32 based on % stage WP I-J-K reports, and
31-32 based on final WP L reports. &:
Review: Reports %31-%32-31-32. ”
| g
2-41 _

................
...................



ﬁ “ - ':'f Project Description

Work Package

Identification: S

Name: Feasibility Study: ACVC vs. Ada FD Validation
ﬁ' Purpose: To ascertain the extent to which the Ada FD
' may serve as the direct, or indirect basis
s for a validation of the ACVC test suite.
'\
w Contents:

<. It has been argued that the Ada FD should, or could, be

¢ used as the basis for a formal verification of the ACVC
test suite of correct and incorrect Ada programs. The pur-
pose of this work package is to study the feasibility of

- this thesis. Different approaches are conjectured:

- direct executability of the Ada FD

- (automatic, or interactively assisted) proof/disproof
of properties of each individual ACVC program

- indirect executability via either the Karlsruhe EAG, or
the NYU SETL descriptions, or both -- either of which

2y

to the presently proposed Ada FD.

Requisites: pre: WPs I-J-K-L-Q
post: none

Man Months: 3

J

o
.

Deliverables: Report 33: Feasibility of ACVC validation
with respect to the Ada FD

x|

oo

Review: No

have formally, or systematically been shown "equivalent"




.
ot S R St

Formal Project Description

Definition
of Ada

Work Package

Identification: T

Name: 1SO (ANSI, ECMA) Liaison

Purpose: To guarantee that the present project results
in a FD, which

reflects as much as possible of the current
state of Ada as discussed within ISO, and

may possibly influence Ada changes in the lst
S year Ada review by 1SO, and

will be ultimately acceptable by ISO as part
of their subsequent Ada Standard.

Contents:

Travels to ISO Ada standardisation meetings, and corre-
spondance with other organizations as determined from wp A.

It may be expected that the ISO liaison may lead to de-
sire by 1SO or other official institutions that the current
project attempts to work out proposed changes to the
ANSI/MIL-STD 1815A (January 1983). The present project has
not included this in the ressource estimates, and does

not intend to do so.

Requisites: pre: None
post: None

Man Months: 4

Deliverables: Unnumbered reports: travels, deliberations
and status

by r_'r$ O R CR AR \5"\( NiyTs’

PR




pul WO

I1-38

“3' Project Description

Work Package

Identification: U

Name: Management
Purpose: To coordinate internal work packages, external

liaisons and reviews, partnership sub-projects,
and CEC liaison.

Contents:

Establishment, monitoring and control of rolling plans and
resources, budgets and finances.

Man Months: 26

Deliverables: . Monthly and & year reports to CEC

v’ . s 0 0 -
AP
PO AT

’
l"‘
* s

f.(.f. B AR
>
[§

p ‘.\'5-‘!




< . . v . Al . « .
. N ‘ A mAa st et A A A AN E UMMM RO R A R Al A DAt e T

The b
Drant R . . =
z Fommar Project Description |
of Ada

-
. -
: Work Package ]
Identification: V ."
)

3 Name: External Reviews
Purpose: To guarantee quality and acceptance of result- g

ing deliverables.

LA
Contents: e

International groups of Ada and FD experts will be estab-
lished, consisting of experts in the relevant fields as

well as representatives from relevant part of the Industry. E
Their members will be agreed upon by the CEC and <
the contractors. The groups will be referred to as the Ada ~

FD advisory groups. These groups will regularly receive
draft and proposed final reports of the various Ada FD, -
informal correlations, etc. The review process is then one

of obtaining input on the form and content of these docu- o
ments. This will insure that all achademic points of views \.
are taken into consideration as well as the practical use

of the results.

The CEC and the contractors will set up a review board to

assist in evaluating the results of the projects, using as

a major input, the comments from the international adviso- '!
. ry groups. See also sect. 6.3.5. .

Funding of these activities is not included in this pro- £
ject, except for the contractor part. t{

. &
Requisites: pre: WPs B, D, E (see WP F), G, I-J-K-L, P, R NG

post: WP -~ accordingly

! Man Months: 4

Deliverables: Reports: draft, and final review reports.

®y "¢ "y
LI P

>

[ N

hY




‘ul , o Project Description

Work Package Y

Identification: X

Name: Educational Material
Purpose: To plan a set of tutorial courses on the use

of Ada FD and implement one of them.

Contents:

In order to enlarge the user group and make the Ada FD

accessible to people not familiar with formal definitions,

tutorial type courses will be planned.

The work package consists of 3 parts:

1. Focusing on the user groups defined in wp B, course
contents will be defined for each, emphasizing the
needs of that particular group.

2. Implementation of one of these (typically 2 week)
courses and

3. holding a trial course.

Requisites: pre: B-G-I-J-K-L
post: none

Man Months: 10

Deliverables: Report 34: Tutorial needs of specific user
groups Course notes

Report 35: Course notes and Instructors
manual

Review: Report 34

I I AR N A o e L s S A O R PO Rl L P R
GO ey e G Tyt o S SR e, N A D

.




e 1-41

Oratt

Formail . . :
zoe:nmon Project Description

of Ada

6.3 Management Issue

In this section two issues will be addressed.
- gsetup of the management organization
- work schedule and deliverable .:tems list.

6.3.1 Project Organization

The project organization is defined in the following organi-
zation chart.

T T ]
| Review | erec
] Board | |
, Managerial]
1Board |

Project T |
= Manager : PrOiS%E
[ Group
Leader |
Toup Toup

| chpor- | | Members |

B~-47

.............. e Y. RIS P S ..’..'..-‘- RPN e te e, e
QG0SCY N,V QR LR LN '::v':'}:r“..i"" "" S RS OR EOR D A1 L A R UL TS T LA 5 LW O

L AR
- ALY
R S

Y

AR

Al

1 B

)
Ao
[ A

<



»
RTIN
L4 "

-

-

[}

F
N
’ 2

*
“Il o Project Description !
PR
PO
y 6.3.2 Managerial Board "2l
s

o

The managerial board is responsible for all decisions af-
, fecting more than one partner, in particular:

. - all contractual matters

- approval of all major technical decisions concerning re-
quirements for components delivered

- internally, by one Contractor to another

- externally, by one Contractor to the Commission or
a other parties outside of the group of Contractors

- approval of significant changes in the development plan
and all changes that affect the delivery of a contract-
ual item to be submitted to the CEC

- monitoring the progress of work including quality con-
trol and quality assurance procedures.

The managerial board consists of one representative from
each of the contractors. The representative must be able
to represent his company in financial matters, and to nego-
tiate with the Commission on behalf of his company. He
will further endeavour to insure that his company satis-~
factorily performs the execution of tasks assigned to it.

To resolve major technical problems the managerial board
may appoint fast working committees.

After having informed the others, each contractor shall
have the right to replace its representative.

The Managerial Board shall be chaired by the Prime Con-
tractors representatives.

It shall meet at least 3 times a year or, at every time
when necessary at the request of one of the Contractors.
Meetings shall be convened by the Chairman with at least
seven days' prior notice with agenda. e

A secretary shall be appointed by the members of the e
board. Minutes of the meetings of the Managerial Board i

shall be drafted by the secretary and transmitted to the S
Contractors without delay. U

The Project Managers shall attend the meetings of the )

managerial board. ;
Decisions must be unanimous. e
o
r -3
N -
’\ ‘.;\
-.1
®
5 B-48 N
-t I d .h
hY
i
....... N

) ‘;."-"_.")\ n et Tt AN
L LR U PR O N A,




< a4,

T A p e et T P Tt e A
{L“. ﬁ'L&ﬁ‘tﬁM'-.:‘P‘.\‘: "‘:*i":l. - ,n\‘J "‘_‘J Y P ‘} N

e I-43

Dratt .

Formal . . :
Oefinition Project Description
Q

6.3.3 Project Managers

Each of the contractors appoints a Project Manager. The project

manager appointed by the main contractor also acts as
project coordinator.

Each project manager is responsible towards the managerial
board for

- the coordination and scheduling of all project tasks
assigned to his site

- the punctual delivery of any contractual item in project
activities of his site

- definition of suitable programming and documentation
standards to be followed in the project

- acceptance test procedures

- configuration, ordering, installation, and maintenance
of any hardware required for the project

- reporting to the Managerial Board about the progress of
the technical work

- presentation to the Commission and/or appointed techni-
cal experts

- maintaining contacts with the Ada related communities
mentioned elsewhere.

In addition to the site manager each contractor will have
a deputy project manager who will take over the respon-
sibility of the project manager during any long-term
absence of the project manager.

The project coordinator is additionally responsible for
ensuring a continuous, consistent contact between
managerial board and project managers.

Among the responsibilities of the project coordinator are:
- co-ordination af activity plan,

- co-ordination of documentation standards and all matters
relevant to integration of the different projects sites,

TE T T, T TET TR Y W LR L

. "_'4 ‘ h‘.', .'u._'

1
.
)

|

Ja N

e
*44 RO e R

ol

"
4
aa

et A e

-



r
Al
. v

o 1-44
e . .. oY
VA Project Description N
12 -::-"7
., TN
A} r\_-.'
| "':-’:'
| - preparation and distribution of regular overall pro- '
! gress reports to the CEC, g
e
- organization of presentations and review meetings etc., E&,
- maintaining the formal contact between the managerial ; :v
board and the CEC, (2
, am e
E - collection of the Contractors documents and statements Y
of expenditures and forwarding thereof to the CEC. gy
t 6.3.4 Group Leader -
I Each group leader is accountable to his project manager for ﬁ;j
I
- the execution of the tasks assigned to his group T
&; - the correct performance and punctual delivery of these N
tasks in accordance with the gpecifications and schedu- P
les approved by the managerial board N
(.
[ - issuing regular progress reports for the technical work R
assigned to his group PN,
q' - keeping the project manager informed about any important .
- problem (technical as well ag non-technical) that might
“ arise in his group. 1In particular, the group leader
|E: must report immediately to the project manager any pro-
- blem whose solution might involve a change in the re-~
sources allocated to the task
o
5% ' -« co-ordination of all group technical activities in-
cluding
e
b - adherence to standards
‘\:'.
. - s8specification of work to be performed by group mem-
Ej bers
- ~ s@pecification of important interfaces
{2,
&: - quality control.

6.3.5 Review Board

The Review Board is a technical board which supports the .
CEC and the Contractors with technical advice during the -0y
project reviews and the project presentations. 1Its members i
are selected jointly by the CEC and the Contractors (ref wp V), o
and should represent all user interest.




Tl el g W

Project Description
ot Ada

6.3.6 Project Planning and Follow-up

Each contractor will set up procedures to plan and monitor
his part of the project. The procedures will include:

~ definition of internal milestones (contents and date):
progress is measured solely on completion of milestones

associating ressource estimates and allocating persons
to each work package

monthly reporting describing which results have been
reached, the ressources consumed and the overall plans for
the remaining part of the project (a rolling plan).

6.3.7 Project Reporting

For every calendar month there will be a Management Control
Report to the Commission. The Report will be two A4 pages
long and contain statements on:

work package started in the last month

work package completed in the last month

work package delayed with reasons, and actions to be taken
to correct

work package scheduled for the subsequent month

revised project plan if necessary.

There will be Financial Statements every six months.

All project reports will be in English.

All deliverables to the Commission will be provided to all
partners and subcontractors.

6.3.8 Work Schedule and Deliverable Items

This is the planned division of work which is subject to
change during the project. Major Changes which influence .the
division of responsibilities between the partners, must be
approved by CEC.




I-46

.m.\o.ﬁi.fu&c dm o3 Ay 1wy

: $2)9043009p o7 SQ...RG»ON\

w031 gralfaud

sprrod  mataav

&}

_?_
-

o

£

-  ofe

O

%9

J-

L' 4

?

T

&

®-
@’

<oDawlhLdVXIT-N¥Xax20aTdoaduvViIS>

¥
Lt .t

A TT

[4

[4

e °C &

L /4

2

”

S A& O

s

h

&
=

ﬁ




The

Dratt o,
Formal . [
Definition . .
of Ada -

W

[Nl SR W gt

% .’. - a""‘
d

-4

.
s
L
[}

»
.
.
()

|

- .‘“\
LR -
> )
.'_

h..
N o
B
. -
.
Y

A w?
N
.\
| N
.

."
o~
- )

.

..'

“e S

0. G

-‘

. R

a ..
B DS

o »

.

g . -.
. N -
- . -,
. :‘..n
* -
A )
™ R
. .
L S
., -
) -
-

PSSP
*

e, v
NCRCRRN

LY - =¥ s

AL A
RSED



tg ma’

z,

N

DDC/CRAI

Manpower Resource Allocation: Month-by-Month/WP-by-WP

I-47

tAlg

Urant
rormai
Denmitian

First 12 Months

-l\\

12

11

10

t—+—F -t — 4

+ + +
+ + +
+ + +
+ + +
] -
] N
] o~
+ + + -
-
N
o~
+ + + —
-
N
o~
+ + + —
-
N
o~
¢ e ———
- [ ad
N N
- -
$ e ——
- -
~N N
- -
$m——
(=]
N
[
o — +
[] [] [
1ot K
o —rd

'y
*

—pocanad

| o/1 | o/1

Y
r

Y

e

%

a5 OA Ny
¢ ¢ 2 i\:k!*s

\n...-.-.
a1 8 8 8 4 &

| o/v | w9 | o/ | o/t |

| 170 |} 10 | 70 | O/1 J o/ J o/ J o/ | o/1 | o/ | o/1 | o/

RS

| %/0 | %/

e
+

0| &0

<
v

e
v

<&
v

1 person DUC one-sixth time, full 24 months

U | 1 person DDC 3/4 time, 1 person CRAI one~-third time, full 24 months

1 person DDC one-sixth time, full 24 months

1/3, W: 5/12, U: 11712

1712, ¥ 7/12, 2:




——pmmm

Summary

21 22 23 24 Sum

I-48
20

DDC/CRAI

16 17 18 19

15

The

Dratt

Formal

Definition

of Ada
14

Manpower Resource Allocation: Month-by-Month/WP-by~-WP ~- Last 12 Months

13

I ? » + e hl . \ . Yy ..-
Ry Y Y AL AA 1Sxed A (\‘A' s ‘.w o 'V)...- RS s T ] N s A -w \-.
\ ! 1 i 0 0 ) ! 1 ‘ q ' ' ' ' ' y q 0 %
] ) ] | | | ] ' ] ' ' ' ' ' ' ] 1 | ] ,
PN B EE- B EE " EEEE R DI M IZ IO IO X I &IV IELEDED> | = ——— — ' ‘.
' ' ' ) ' ' ' ' 1 ] ' ' ' | ' ' ’ ' “ “ !
||||||||||||||||||||||||||||||||||||||||||| .
' ] ' [ ] ' ' ) ' ' ' 1 ' ) ' ' ) ' ' | “
t ' ] ] ' 1 ' ~ ) ] 10 1 ot ' ' ' ' m ' w... ' m "
cloilNINITIOINMNIOIlOIlOI™ Ol IiIrmcrlolINI"IlOIMIOIl®OIO ] ' -
N ENTN I N IENININININEN NI N IENIN TN TN INIEN NN NN W o g /
~ il 1 mMmIiNIOI" (O™ INIOBIOI®DI=IMmMIVIiololgIol<LI®O! I ® I~ 40 [
' ' 1 | - ' ] ' ' ' ' 1 - ' t -
1 ' t | ' ' ' ' ' ' ' ' { “ ' ’ '
' ' ‘.
=) -
N N X I NIz
- (=) L] ~N - L 2.
+ + + + + + + + + + + + + +— 4 +— 4 + — m N ——— _....
2 T T m >
- 1) o - SIS .
U T T T T T T T TR . ik R ek R o~ —————— o
2 J Q ~ % 1N I X
- o ol el 3w NI~ »
m - m [ N
+ + + 4+ 4+ + + > —_¢ ——— e a— + —— > —-_ ¢ > - ¢ —— —— — o
- L]
gl igis gl ig §id:8 ;
~ ~ ~ ~ ~ . o] N = Py
- o - - o u -« ~N O Ty
- < '
+ + + + + + + $— ¢+ ——— tP———————¢ + ~ v ~N —_————— o
g Tig SRR RS S8 | e
. o
- (-] - [-) - o o - 4 .n;u a9 < L “ [ S
,h L “ 1 .
+ 4+ + + 9 + 4+  — ¢ —— —— $ = = ———— + ] — e T —— o~ m A
[} - ] - - “
2i I3ie) 131243is 8141 ixigigis
L r
V W - o - ol o “ - < W - ',
' ' - S
+ + + + + + + $ e — e —— o e —— + n ————— — m “al
o o - =] - - .»._ (3] .m .o
] ~ ~ ~ ~ N ~ » 4 » N —.m - s
' -l jOole~ o o -4 ] I ™ ~ B
| a 0 " - s
+ 4+ + + + + + $ o e ——— $ — 4 4+ $ ——— N " 1 —— e —— ~ N
' o! o ° - -!o m " m "
- ‘
] S ESN I N EN N NP N 61 &1 8 »i8iD1t - W
“ - - o - o o o - < H - H = I
+ + + + + + + $ e e = —— 4+ -+ + ¢ ——— x m — — — —— - P
] a - (=] [ KB
1 iiir < T8 sl R1g > 1N o Rk
- |10+ ) o\ m ﬁ m 1M N .
+ + + + + + + e ———— [ e + B — ™ v —— e — N Y
] ' m. < m. .
o [=] - { o - - o ~ -
NN NN N NN ™ > 1 N w ~
- - (=) " - o o & L od - < ™ n e
+ + + + + + + ¢|||||4|¢ + — 4 + $— =4 m —————— e
it J T8 g > I N >
el R B e o oI .F g . R
- L ] »
+ + + + 4+ 4+ — ¢ e — s ———— ¢ — + o v ———— — — o~ ......
- o o - “ - [=] N. n e
N NNt N N N > I NI DI &%
o - - o\l (=) o - . ™ ™ o o
Ny ~t _t_!x .
' ] ' ' ' ' ' ' 1 ' ' ' ' 1 ' ' 1 ' ' ' 1 ' 0 o
€ 1 A IO IA TR IBIOIZIHINDIXIITZIONANIOI XIKI®ODIBIDID> m.I.l ..s.
88 3
:
e I e .~ - « Fg e _o 0 - « « ¥V @

e S PR AT VP EEEFF T  IYYew4dy RS I



v
ad v 3ul
any RoILINLEEG
THNOCINT Py
VSISt aiS-1IN/18MY
INd ARG
HOLAVIZNNOO

X
152030
[euoiIsonpa

P

OAD

N \-\.\,-hh“v.nr\ A

.

.

—

&
woa

L4
JOWNORVI
ROIIV1I10848

-9
#01i4140030 *py
U3 NAN ING
Ol ONIddw

4
NOIaVOITexs
THaodng

— |

|

SNoiLIniana
TVMO4 *pyY

40 W0liveoainl 3
JS1dnveas

TETIVUVE JInveag 3
TNILEEO080, DTuvnig ¢

40 WD1LIN1480
TV™a04

| Sm—

Tl

|

"
[ 0~ dyl). |
FOVNORYY
THNLVE uod
STINE  aNNowD

9
sownony
0101410249
RAILVINES

'\."{\',\ )

-
.. Y

S YL AL B

:p ! " --

SRS
b Lo



WA o r ’ :
Jaga L Sela'} (
’ n.. g Sat Jel ey N 57 RIS Ny -_.

- M.y.t.lﬂ. .J— i o » o : e ’ M 4 -
) i . O n-m A y M ’
" (AP y Y] a2 By by %y ¥y v W o f’.'
), _ b L .

Tk s A 4 ~ » -
T ARSI AL L



LS N A AN ML R R PR SN L o A S LD

Lo Project Description

. v
* .
. £
Y .
) e
WP Name Deliverable Items ?
A Start up Project and Review procedures,
mailing lists
[ B The R3le of the RD Report: The Rdle of the FD
o (Formal Definition) of Ada
¥ C Tentative Specifi- Report: informal description
g cation Language of the specification languages
4 and notations to be used.
¢ D Example Ada subset Report: references to those
selection parts of the Ada languages, by
reference to the ANSI Ada in-
b formal description, which will
[ be subject to a FD in WP E.
.. E ‘| FD of a "Difficult"” Report: FD of "Difficult”,
.: example Ada subset Example Ada Subset
F Initial Review and Report: review -- with positi-

. Approval ve/negative recommendations:
b - whether to continue, or redo
parts of WP E.

G Final Specification
Language

Report: informal description
and formal definition of the
individual and combined seman-
) tics of the chose specifica-

™ tion languages and methods.

H Ground rules for na-| Report: Guidelines on how to
X : tural language ex- extract and correlate informal

plication descriptions of Ada from/to an
. Ma FD-
IS
~ I Formal Definition of| Report: The Formal Definition
Ada Static Semantics| of Ada Static Semantics.
o)
I J Formal Definition of| Report: The Formal Definition
Ada Dynamic Sequen- of Ada Dynamic Sequential Se-
‘z tial Semantics mantics.
K Formal Definition of| Report: The Formal Definition
the Ada Dynamic Pa- of Ada Dynamic Tasking Seman-
o rellel (ie Tasking) | tics.
A Semantics
™ L Integration of Ada Report: The Formal Definition
Formal Definitions of Ada
3
e
3-53

O

B NN RAVA TR CAr L2 LR RO




........

LW wE R WL,

I-51

.........

o Project Description
of Ada
System

WP Name Deliverable Items

N Requirements for an Report: Requirements for a
Ada FD Tool set Portable, APSE-based Ada FD

tool set.

o Tool set Construc- Report: Ada FD tool set:
tion architecture and design, users

manual, installation manual,
primer, etc.

Software: Portable, APSE-based
Ada FD Tool set.

P Informal Explica- Report: An Informal Explica-
tion tion of the Ada FD.

Q Feasibility Study: Report: Feasibility of a
Mappings to the Mapping from the Ada FD to
NYU SETL Ada Inter the NYU SETL Ada Interpreter.
preter

R Correlations between| 2 Reports: The Ada Reference
the ANSI/MIL-STD Manual to Ada FD Correlation,
1815A Ada Informal and: The Ada FD to Ada Refe-
Definition and the rence Manual Correlation
Ada FD.

s Feasibility Study: Report: Feasible Ada FD rela-
ACVC vs. FD valida- ted models for ACVC test sui-
tion te validations.

T ISO (ANS1, ECMA) Travel and Status reports.
Liaison

U Management

v External Reviews Reports: draft, and final re-

view reports.

X Educational Materi- Report: Tutorial needs of

al

specific user groups.

All items with exception of software developed under work-
package O and management reports are public.

m

PP rr

A

.

R

o
A

Ly

s

D
o

h “s’e

A

]

XA

e

TS Y

v, L
L 3

WO

A




-

£ e Ay S * - \M-\.;.-\Y 4. %% ? -...'-b s, \\ .\-V--‘ ¢ P [ ™
> nﬂ.ﬂn_ ey s | (ORI IXINANAX)  RIATOX CRERARAS. | XX
‘.Nn- o 4 4 [ LS ] | AN RV atatata et AR ANARA ot -..:i’.sr.- ol 2o e le i o

3-69

- 'u . -, f.w ...... vl -« -,.-»\.-. g .‘-f.‘..n .-.- JJJ I & » N‘ ’ X s

Lo et N

STy

~oad

&

PN

LRy

"

&«

Rk
(™

ey

o, .
LA

<

-
- N

A"



The Draft Formal Definition of Ada®

N Commission of the European Communities: Multi-Annual Programme
Towards a SMoLCS Based Abstract Operational Model for Ada

) E. Astesiano, F. Mazzanti, G. Reggio

. 20 August , 1985

K

e

\-\

0

r,

ﬁ

£ B-61

‘Ada s a registered trademark of the US Government (Ada Jont Program Office)

LA T S S N A S S SRR T S e Te AT T T M s s e e e’ T Tat e T Tt et e, Lo
o' oL e \'.',-"\'..'-\‘. " WA -‘ " “\' ~.‘-'.. ..\ -‘-’_ “.-' VA Ky '1’\' MDY AL A



W0 d P S P PR AN 9 404 £ LA AR L it St Al hale Wi gl A e A A\l 3 JOv i PAS0N M v

~ g
e ‘.‘-'.‘-
J'J". h. L"
Formral L
Defhnition
ot Ada =

E Page 2

’
]

"‘- \

l'- .‘n’ v .'i v
RARDS

%
Pl
| T

B i
:",‘;
P,

e
v
L

ABSTRALT

)
(]

v
AL
.

This document is o deliversble related to the activity of work peckeges C and D. g

in this report the motivetions of the choice of en under!ying model for Ade ond its mein
features are outlined. el

’ ]
2]

vy
..I
h )

A
{yﬁ(ﬂ:’

U L4

L]
R AR

Ly
[

B-62 _

I“(‘\i ‘f‘«

R R R R R R R R T L AL PR L AL .
R Ny S S R R L A S LR A5




AN S S Dl S Al G £ S8 T i b e Y D Aure Au i At b ta TS 0 S S it Ay % -1
oo
0
i e Gt )
Oraft "
Formai
Defimtion .
ot Ada p:'..
f*\ . :_:./ i
oY _:‘ {
L S Sy L
‘- Page 3
RN
I )
| A
” A
'\ P l‘
t 25
. &

I TABLE OF CONTENTS ' Pege

.. .\

e .‘:-_
- o
! INTRODUCTION ...t recssassss b saes 4 o
N

2. LOOKING FOR AN INDUCTIVE STRUCTURE ...........cooonvrrrennenne. 6

2.\ A depoadeace drivea stracture ............................... 6 ‘_:

2.2 A scope driven struclure of Ade progrems ...................... 15 I;i;::‘

2.3 Melivations for a lincerized mesk! ........................... 19 .

3. GLOBAL INFORMATION oo 21 2
3N ERVIFOAMERL ... esseesreseeeeseon 21

32 /WMOIY SITUCIHPE ...........eoeoeeeeeeeeeeeeemememeesressrereeseeseerens 24 P
3300er informetion .................oeerevevrerrrinne 25 b

5. OTHERISSUES ... essseeeeesnssense s seenssn 29
SN EXPUICHO Time ....................oooooooeeveeeveereresecessrsssenssssessssss oo 29 Y
S.2 POPOIIBTIIM ...................oovererrevrrrrereveeeresseessssssssssssssssis 30

S.3 /mplementation depeadent 83pects ... 3 ;3:.'.
6. COMCLUSION ... asnss s stse s seeoe 32
7. REFERENCES ...ttt ssstn s et tsmsnas 33 o

-“l..l"-,-

-y -
yf'.{ ‘.: 5 ‘.' '.' '., .-' .




Formal
Definition
of Ada

b, Page 4

1.0 INTRODUCTION

We sgree with the opinion strongly put forwerd by E.K.Biumin [Blum 84] thet eny ressonsble
semantics of Ads should rely on an underlying sementic model, and thet we can be misguided if we
just look for s syntax directed semantics without & preliminery study of such & model. This is
perticularly true of Ads which follows o sequentisl declarative/imperative style even when
introducing concurrent festures (e.g. the syntectic construct for the tesk crestion hes the form
~ of & declarstion), so thet there is no essy relationship between the text of 8 program and the
stetes of its executions.

Nevertheless, since the methodological importancs end the ecceptance of the syntex directed
: epproech is out of question, we think thet en effort should be mede for giving e syntax directed
I semantics relying on 8 cleariy defined and understood underlying model.

In this report we will outline the motivetions of the choice of & model and its mein festures. In
enother report [Astesiano et ol. 85 b] it is shown, on some semple longuoges with Ade-like
features, how to connect an ynder1ying mode! 10 8 syntax directed spproach.

We stert from the sssumption thet the beheviour of en Ads program is represented by o
concurrent (flegged) transition system specified in the SMoLCS style (see [Astesiano 84] for
on infor mel introduction and {Astesiano et ol. 85 8] for foundetions) .

We went to investigste the oversll structure of this specificstion, i.e. the possibility of
defining it in on inductive woay a3 well ss the overall structure and mesning of the needed
Y informetion, structures snd actions.

; In defining this operstionsl model we try to remein o3 much ebstrect 3 possible, modelling
-, explicitly only the semantically “non- hiddeble" festures of the language.

s

In the project, the semantics of Ade will be given in two parts: o first one specifying the stetic

sementics of the Tanguege, ond ¢ second one specifying its dynemic (sequentisl and concurrent)

sspects.

As this model will be used as ¢ reference in the description of the dupamic sementics of Ade, it

neads not to reflect all the properties already steted in the gtatic sementics pert.

This epproech is rether different from the stenderd one edopted in giving denotational semantics,

. in which often stetic and dynamic sementics are specified together (e.g. modelling type checking
s if it occurred dynsmically) ; indeed we sssume thet our progrems ere slweys correct from the

' point of view of stetic semantics (e.g. scoping and type checking).

: Being our model more dynemics-oriented and less stetics-oriented, it seems ressoneble to meke

some sssumptions about the syntex of the program, which mey simplify the oversl) description




_< ..... .. - “' v v - Wy, W 2 ~ T $ v > D w » "
e
b} Dran
Formai
Definition
ot Aca
Page S

of the mode).
For exemple, & useful gssumption is thet all the identifiers (introduced by declarations)
eppesring in different places in the source text sre different. This simplification sllows to

Y

{ essociote to each name, ot esch point of the text, o unique mesning; with this epproech indeed,

; problems of hiding or overlosding are supposed to be resolved almost completely in & previous

- step consisting in 8 simple translation snd checking of the source Ads text.

&

: i

Cal :':..

-
_-.:.:"

v N

. L

3 SN

. '.::._.".'

B-65




....................................................................

T AR S
N ‘
QPR
x33%°
Y

c

pl

L _|A
»

Page 6 v

2.0 LOOkIIG FOR AN INDUCTIVE STRUCTURE i:

A besic ides of the SMoLCS methodology is thet o concurrent system is modelled &3 ¢ lobelied
transition system whose states consist of the states of the component processes (subsystems),
plus some global infor metion. These states are ususlly represented ss couplies -
" <3yl syl szl sy, inf>

DRI LPY UL L

where 311 3o 1 sz l.ds, ise multiset of stetes of the component processes.
The transitions of & state of & concurrent system are inferred from the transitions of the .
component processes by means of formulas of the form:

cond ~agIlo s a 8,180 s50a sty 5> s Doy =

Given & basic transition system, specifying the structure of the component processes, snd some NG
perameters relsted to synchronization,psrallel compesition and monitoring, we can produce the -
final transition system in 8 canonicsl way using the SMoLCS methodology. _

If the component processes are themselves concurrent systems, they can be specified in the seme ‘
wsy. A SMoLCS specification of 8 system mey be inductive, 8s it is typicsl of the SOS spprosch .
[Plotkin 81]. ]

It is not evident how on Ade progrem might be mapped into one of these inductive or hiersrchical :
structures in o rather netural way. Several siternstives sre discussed, together with their -
sdvanteges snd wesk points. -«

First of oll we must give on intuitive mesning to the hierarchical concept of “subsystem™ . in .
generas) it is useful to sssociete 8 subsystem with the execution of some syntactic construct of the ;;15
lsnquage. For exsmple, if we want to put in evidence the concurrent structure of 8 program, we
might represent by e subsystem the behaviour of & tesk; otherwise we might represent by s
subsystem the behaviour of o block, or task, or procedure, putting in evidence the nested
structure of sll constructs.

. of
Then we must define which is the relstion defining when 8 subsystem is 8 component of another -
subsystem, and what is the infor mation modelled in each subsystem &
We begin with ¢ discussion of two rather interesting siternetives, bssed respectively on tie " |
mastership dependence between masters and tasks and on the environment/store structure. i
2.1 A dependence drives dynemic structure i
In this section we suppose thet an Ads program is composed exclusively by tssks (types) (ie. no -
|

B-66




e

Sratt
Formal
Definition
ot Ada

syubprograms nor blocks are used); this sllows us to give o subsystem o simple mesning (task
execution). This restriction might be removed easily but now it ellows us to put in evidence
with the lesst effort and without any loss of generslity the problems related to the hierarchics!
decomposition of an Ade progrem.

Page 7

In this model the direct inclusion relstion between subsystems explicitly represents the direct
dependence relstion between tasks, i.e.
if sub1 is the subsystem corresponding to the tesk Ty, end
s is the subsystem corresponding to the tesk T,
then sublisesubsystemof s <==> Ty isadirectdependentof T.

When o new tesk X is crested, o new subsystem is crested within the subsystem corresponding
to the tssk “mester” of X. In this way, the structure of the system explicitly models the
dependence structures within 8 program. We can observe thet in this way the subsystems
corresponding to all the tesks which are direct or indirect dependents of & tesk T, ere inciuded
(ot verious levels) in the subsystem corresponding to T.

As 8 consequence, 8l the interections between tesks besed on this dependence relstion ere
modelled in 8 very netural and simple way.

For example the effect of on gbort statement on o tesk is completely defined o3 & transformetion
of the corresponding subsystem (this subsystem snd el its component subsystems become
“abnormal” or completed), ellowing & direct representstion of whet is specified in the manuel.

If we suppose thet o subsystem is represented by the following scheme :

< task-name, tesk-stste, octusl-action , subsystemil ... | subsystem n>,

or using e grephic notetion (following the style illustrated in [Bjorner et . 80} ):

P
LI

,.: e

LR
AR R RN
,'"I.'I,’I.'

"
.

a3
&

i

-
..."

[
PRI
.

Y '.'J'. ‘l’ ‘.. 44

L)
(XA
fﬁ??lﬂs%

.\::
0




o v
a n A

N

b
H

e .
Drar
Formai
Definttion
ot Ada

) <tesk-nomespec.tesk-stete,. ..

Page 8

(note thet these graphs can be formelly defined )

becomes

or using the graphic notation:

N Lt e Y T oS e e e e e
Tud -t(.\\-\‘f-.'-:{' '.':-.':!.."".'{‘:t\':‘.':\.’..‘. e

then the effects of an abort statement on the task T1 csn by illustrated, for example, by the
following trensformetion of the corresponding subsystem:

T1, gctive, ... <T2, tive ,deloy(...), <T3,gctive ,if ...»>l < T4, jermineted, ..>

<T1 ,gbnormal,...,<T2 completed, delay(...),< T3 gbnormal if ...,»51 < T4 ferminated ...»»

<T 1spec octive,..»
<T1body,...>
<T2spec xctive,...> | <Tdspec terminsted,...»
‘ ¢T2MU,...) ) <T4M“"”)
<T3spec active,..»
<T3body,...>
becomes:
B~68

27 0

<

Ly

N _\'_\)

e -,
[SEARS




=% .

o=

he? AU
PR AN

ﬁ.'

RN

-
T,
...l

.........

The '
Orar
Formal
Definition
of Ada

Page S

<T 1spec,abnormel,...>

<T1body,...»

<T2spec,completed,...> | <Tdspec terminsted,...>

<T2body,..> T4body,...>
4 <
<T 3spec,sbnormel,...>

<T3body,...>

Anslogously tesk terminetion is essily modelled ss occurring when the corresponding subsystem
is “completed” ond o1} its component subsystems (if any) ere "terminatoble” (o subsystem is
seid “terminetable” when the corresponding tesk is termineted or suspended on & select
stetement with sn open terminete alternstive end oll its subsystems ere “terminsteble”),
following strictly the menusl description of this event.

Apert from sllowing s netural representation of these synchronized actions, this model presents
some disadventeges in describing other kinds of intersctions, not related to the definition of the
dependence relation between tesks.

As 8 consequence of the Ade definition of dependence, it may happen thet when o tssk is crested
by the evelustion of en allocstor, its mester is not the tesk which hes crested it but some other
task ot ¢ higher level, more precissly the tesk which hes eleborsted the corresponding sccess
type decloretion. In this model the request for task creation hes to propegete upwards end the
subsystem corresponding to the cresting tesk hes to interect with some higher subsystem (by
synchronizstion or by resding its informetion) in order to des! with the sctivation of the
crested tesks .

This is in perticuler iltustrated by the following simple exemple:




P . U Y W . il . -
A A e e N W T b WU R R0 ARRR Al - Sty AR AAS . <

% z o, @
_ el L
[}
LY A
) Page 10 ':'Q
‘
task MASTER; 5
tesk bedy MASTER is )
¢ tesk type Tis .. .end T; .
. type RTis access T,  -- the tssk "MASTER" declares the sccess type ;\
D -- designeting T -
. tosk bodyT is ... odT; "
> tesk INNER; - - this is o nested tesk within the tesk "MASTER" -
N tesk body INNER is
k- task CREATOR ; -~ this is o nested tesk within the tesk “INNER" =
tesk bedy CREATOR is
> X:RT:=mewT; -~ the task “crestor™ activetes an instence of T N
N begin == (which is e dependent of "MASTER")
N ... 5
- ond CREATOR;
N begin “
\ :- 7
- ... e
X ond INNER Py
begin |
ke end MASTER,; -
E:
the situstion during the evalustion of the sllocstor new T is illustrated below: E
" o
; <MASTER octive begin...,<INNER getive,..., CREATOR activating,..mewT»> < X ALL getive,...»»
‘. e
or ysing the siternetive graphic representstion:
¥ DY
¥ .
o N
" Jat
iy -w
X =
A o
14
L
; 2
| |
-
] B-79 ]




o

g e e

atae

R

"l N ""
,

€«

k]

.
<ratt
Formal
Dehmtion
of Aca

Page 11

<MASTER spec active,...>

<MASTER bedy ,begin ...,...>

2

J ANNER SpeC sctive, .. > K ALL spec xctive, >
| INNER body > KALL bedy , ..>

CREATOR spec, octiveting ...>

J CREATOR body , mevwT, >

In this case the subsystem corresponding to the tesk "X ALL" is crested at ¢ hgher level then the
subsystem corresponding to the task "CREATOR" (weiting for the completion of the sctivetion of
XALL).

This hiersrchical structuring should silow us to split the description of the ¢epvironment end the
gtore ot different levels in the model following the principle of “information hiding".
Ressonebly, we mey think to essociete to each subsystem the locel environment end store defined
by the elaborstion of the declarative pert of the corresponding tesk. References to local
definitions end objects (i.e. defined in the declarstive part of the corresponding task) ere
described rether neturally; references to non-locel definitions and objects instesd are
represented in en unneture! heevy way. In fect the dependence reletion between tesks doss not
correspond {o the nsturs] structure of the environment and so it mey heppen thet references to
non-locel entities (here and in the following we mean by entity an Ada entity, snd for object sn
Ade object /LRM 3.1(1), 3.2(1)/7) have to propegste upward through subsystems which should
be not visible nor eccessible to the tesk (this is not o nice property). This situstion is
illustrated in {he following exsmple:

B-71

o
L4

VN
e YR

[ R AR i
. 4"4'.:‘5{&-&,.
»

|

e B 8 s g ¢ * 8 2 v o -~
O, 4 8, 3, 4 %Y
s 7,

L
-y
-.‘-A o

Xy A
. 4

L]
K

W -"

e

»
% hy 3

P



L 1

tesk OUTER;

tesk bedg OUTER is
X : INTEGER; == ine declerative pert ore declored some entities

task type 7, -- endatesk type 7
tesk bedy Tis
begin

X:.= 3, -~ tesk instences yse some previously declered objects

endT;
tosk CENTRAL; - - another tesk is declared in the ssme declarative pert

task bedy CENTRAL is
Y : INTEGER; == entities end objects mey be declered locelly

' INNER : T; -- but sre not not visible from en instance of the task type 7

begin ...
ond CENTRAL;

begin ..
end OUTER;
the sxecution of X:s3 by the task INNER is illustrated below:

QOUTER getive,..., <CENTRAL gctive, ...,< INNER getive, X:=3 .0

or using the slternetive graphic representstion:

) QUTER spec octive,...,...>

CENTRAL spec ,octive,.......0

CENTRAL body . »
<INNER spec active,...,..»

<INNER Dedy X=3




8t B 3w 8 ATt Ny T IR R X N N 3o BY, Datat Al Yal tatral ‘ol oy 8GRV a Ao 8 o' a‘t a8 2’8l ot *E a'h oR ¥ ois-ota- hod Sob a8,

g Drah A
Formal .
ngnmon —

of Ada '}:
» Page 13 AN
» -

-
‘o

:'

L ]

& Though INNER is & subsystem of CENTRAL, its entity accesses should propegate at least to the i
OUTER subsystem (skipping the CENTRAL subsystem). 28
%
g These references in fect should in genersl be propegeted from the subsystem corresponding to :‘7'
the tesk which hes crested s new task NT, to ot lesst the subsystem corresponding to the tesk et
g which hes eleborsted the deciaration of the type of NT . 3-_:
)
N One of the important properties which make ressonsble 8 hierarchical structure is thet from the 3':‘
2 outside of & subsystem it is not required direct yisibility of the component subsystems. This 3
g property is verified by this model only pertly; indeed, though the locsl environment snd store f.j:_.
7 of o subsystem con be used only from inside of the subsystem, other information about the I;I;ZE
-, subsystem itself must in general be visible from higher levels. A task of & given type T may be -‘,Ef-‘,
% in general sccessible to other tesks whose type is declored ot the same level of T. ool
‘;',' In this model it is not difficult to build en example in which o subsystem S1 might interect :
™ (heving visidility of it) with another more nested subsystem S2. This situstion mey occur Z;IE“
i when tesks sre pessed as paremeters in entry cslls os fliustrated in the following example. 2
| %
i tesk OUTER b
[ task bedy OUTER 13 =
. task type T is entry EE; ond T; -- slosk type T is declered e
P, . task bodyTis .. .ondT; N
B tesk S1is entryE(S2:T); endS1; -- otesk object is crested, RO
tesk body S1 is 7y

-
7
Y

begin == willing to receive, s on entry perameter 5
s sccopt £ (S2:T) do S2.EE ond accopt; - - o task object whose type is T £
: ondSI; %
o tesk S ; ~ - 1n the ssme declerstive pert of the other tesks ::
- task bedy S is -= another tesk object S is created ~
$2:1,; ~- and crestes ¢ task object (of type T) o
i begin =~ (the new instance is o dependent of S itself) T
$1.E(S2); -- the new instance is then pessed 1o S1 t:i
i odS; ¥
bogin ... : T~
ond OUTER; %

......................
...................
-----------------



Te

Jran
rFormai
Defimition
ot Ada

Page 14
the situstion during the catl of S2 .EE is fllustrated below:
<OQUTER, gctive,... ,<S1 galling, S2.EE,»1¢S,in- rendezvous, $1.€(...), 52 getive, ....>»

or using the alternative graphic representstion:

) OUTER gpec octive,...,..»

OUTER body ,..>

<Sspec in-rendezvous,..,> | Slepec callinyg,...,..»

Shedy S1E(.), | S1bedy s2E,.>
S2apec wctive,..>

“szw' PR 4

S1, which is et ¢ higher ievel than S2, issues an entry call to S2, which may be not willing to
sccept it.

The conclusion is thet only part of the information sbout o tesk could be modelled within o
subsystem (i.c. informetion about local environment end store ), and thet other structures ere
still needed in order to meintein the information sbout rendezvous (queues, state of entries...),
tesk ottribute’s velues (CALLABLE, TERMINATED, COUNT), stote of the tesk (ectiveted, in
sctivation,...).

This informetion ebout o tesk, which cannot be directly modelied within the corresponding

subsystem, could either be defined &3 globel or split ot different levels in the dependence driven
structure.

But even essuming o3 globel the needed information, still we have the problem thet modelling
rendezvous requires some kind of sypchronized ection between subsystems in different
branches of the structure , which sre ot lesst " unplessent ~ to represent. A possidle
elternative might be not to model this kind of sctions s synchronous sctions, for example
modelling rendezvous by mesns of messege exchonges, using shered memory, between processes

B-74

e ]
¢
oL

&>

v v
P
L

-

[
ety

L I -
LAt

{

( -;.":l

=




1 g -a_ R

The

Drart
Formal
Defimtion
ot Aca

Page 15

( indeed in this cese an explicit abstrect representation of tesk synchronization would be lost).

The situstion does not change if we relesse the initial hypothesis thet & program fs composed
exclusively by tesks (types) end either we essociste o subsystem to the execution of ssch mester
(tesk, block, subprogram) of the program, or we sssociste o subsystem to task executions only.

Note: The problems illustrated previously sre put in evidence by the border-line cese of s
function returning o tesk which wes e dependent of the function body.

In this case we heve thet the subsystem corresponding to the function body no longer exists
(because the function is termineted) though the tesk corresponding to one of its components is
still accessible, for example it can be checked for terminstion (evelusting its TERMINATED
sttridbute, or trying to stert & rendezvous) (reelly it is termineted!) (informetion sbout
subsystems which might no more exist should be kept somewhere ).

2.2 A scope drivea siractare of Ade programs

Al%0o in this section we consider first the case in which an Ade program is composed exclusively
by tesks (whose beheviours ere modelled by subsysiems ).

(n tins model, if o tssk T decleres severael tesk types, the subsystems contsined in the subsystem
sssocisted to T are the subsystems essocisted to o1l the instances (tasks declered ss objects,
crested by ellocators or &3 subcomponent of other objects ) of these tesk types; ie
if sub1 is the subsystem corresponding to the tesk T4 ,snd
8 is the subsystem corresponding to the tesk T,
thensubt ise subigstom of 8 ¢<==> typeof T, is declered in the declerstive partof T.

In this wey the dynemic structuie of & progrem directly refiects the sctuel structure of the
snvironment (end store). This spproech hes been eadopted in other operstions! models for
sequentisl /perellel langueges ( see [Berry 71) [Johnston 21)).

Some edvanteges of this epproach are its similarity to other standerd operstions! models for
sequentiel lenguages, end the fect thet in this wey references to locel and non-loce! definitions

ond objects are represented in the most naturel snd simple way.

On the other side we should not need to split the infor metion about o task et different levels of

.....

[

v v, v,
* \. \‘_'\ _‘- "n.

D ™
n'a,

Pol o8 2 oW SR L S N N TS
8, % 8" ¥, ',',','-'.'.."
DR IR

e M e T8 B
";}:/-'.n.b pt

a s
[STAC AN

=gt

[
x

oy
B A

'y

.y "I"I .‘l o
(3

v
{ ]

"'s‘
P

4'C
7

a0

WA
-

-
-

D
A




Page 16

our structure, because simost all the visible properties of & tesk could be recorded ot the ssme
leve! of the corresponding subsystem (scope rules sssure us thet s component of & subsystem is
not visible from outside of the subsystem).

As in the previous csse the effect of & tesk crestion should propegete upwsrd, in order to require
the crestion of o new subsystem, ot the level of the declarstion of the corresponding type (and
similarly it happens for subprogrem calls).

But s mejor problem with this epproech is posed by the representstion of sll the “dependence
driven” synchronized ections.

For exomple, sterting with terminstion problems, o tesk suspended on o select stetement with
on open terminete slternetive should look st the stste of its mester (is it completed?) in order
{o decide whether or not to terminate, even if its mester is not visible in its environment (it is
on ususl cese in Ads). This situstion, requiring otherwise an eccess to o deeper subsystem,
destroys our hope of keeping ell the informetion ebout o tesk locel to the corresponding
subsystem. The following is o simple example of thet:

tesk OUTER,
task bedy OUTER is
task type Tis entry £, omdT; -- g task type T is declored
tesk body T is
begin
sslect eccept £, or termimate; -- whose instonces moy execute o selective
-~ weit
end select. - = (they can terminate if their mester is
-- completed)
o T;
tesk INNER; -= o task object INNER is crested
tesk bedy INNER is
X1, -- which crestes s new instence X of the
-=- tesk type T
begin ... == ( Xis o dependent of INNER)
end INNER;

begin . ..
ead OUTER;




e

- Oraft
Formal
Definition
of Ada

Page 17

the situstion during the execution of the selective wait is illustrated below:
<OUTER gctive,... < INNER gctive,...,>I< X suspended, select . or .terminate ,..»»

or using the eiternetive graphic representstion:

! OUTER spec active,..,..>

| QUTER bedy ,..>

<INNER apec ,octive,...>] Xopec suspended,...,...»

INNERDedy , > | body select...or. terminate,»

Obviously X does not have sny visibility of INNER which might be nested even more deeply.

Moreover the resulling synchronized sction (of the terminstion of ¢ mester and oll its dependent
tasks ) should involve several subsystems in general spread scross the structure in o completely
erbitrery wey.

Exactly the same prodblem arises ebout the sbort stetement: the tesks which shoyld become
sbnormel or completed are spread, without any constraint, ecross the whole structure.

It follows necessarily that the ections of this kind should be trested ss top level synchronous
sctions (s possible slternetive might be not to model this kind of actions ss synchronous ections,
for example modelling conditional termination by means of messsge exchenges between
processes; the disedventeges of this spproech heve elresdy been mentioned ).

We can observe thet even synchronous sctions relsted to rendszvous mey {nvolve subsystems
located st different levels of the structure, but in this case the situation is not very different
from the previous model, end it fs o direct conssquencs of the lenguesge festures (ellowing
synchronized actions between tasks ot different levels in the environment ).




palalay %,

te?

' OO

ot Aca

Page 18

Nevertheless we can observe that in this case, 83 ¢ consequence of the neturs! structure of Ads
programs, entry calls csn never occur from the outside of s subsystem towards sn inner
subsystem, but elweys from the inside towerds outside (o tesk is elweys within the scope of the
type of the task thet it is calling).

In the cese of full Ads programs (i.e. relessing the previous restriction), in order to preserve
the adventeges of 8 scope driven structure, we must represent subprogrem executions like tesk
executions (sssocisting & subsystem to esch subprogram ectivstion, st the level fn which the
subprogram was declered). But in this way we loose sn explicit model of concurrency, tresting
in 8 uniform way sequentisl snd concurrent constructs snd mixing these conceptually different
sspects.

The next example illustrates this issve:

tesk OUTER;
tesk bedy OUTER is
precedureQ is ... ond Q;
task INNER ;
task bedy INNER is
begin
Q;
end INNER;
begin ...
end OUTER,

the situstion during the execution of Q is illustrated below:

<OUTER active,... , < INNER ¢olling Q,,>,< Q,gctive, ....... >

or using the alternetive graphic representstion:

B-7C

K )

[ )

VAR B

&
A




'l /’ ﬁa

P~

‘l

-"‘-
-

. o - - v - -
The -
Dran
Formai
Definition
of Ada

P it AR Ty A Al .

Page 19

P OUTER spoc octive,...,...>

| QUTER body , >

| INNER spec  catling, ,.> | Aspec active,...,..»

<INNER body ,Q,..> Abedy,. >

per

We can observe the similarity in the representstion of Q and INNER (s procedure snd a task ).
2.3 Metivatiens for a lisearized mode/

Looking ot the problems which srise when we try to mode! inductively and hierachicslly an Ads
program, we heve to ask whether these problems ere reloted to the model (we heve not found the
right structures in order to describe properly an Ada program) or to the language (does it
really exist o sementic inductive structure corresponding to the inner structure of the
languege?).

We can in fect observe thet en Ads program execution is driven by means of many different
structures (dependences, ectivations, scoping) without & mein one. Whichever relstion we
choose, in order to define hiersrchicslly our model, we shouid desl in every case with the
introduction of some kind of globel informetion, end/or with sn heavy representstion of some
kind of synchronized sctions.

So we think that perheps the best solution is not hiersrchical, but e single level one.

In other words we directly mode! ¢ program es o set of concurrent processes (ell ot the same
Tevel ). Apparently this choice mey seem lecking abstraction, but in the end it is the choice thst
models in the closest way what is expressed in the menusl :“Tesks are entities whose execution
proceed in parsllel in the following sense. Esch task can be considered to be executed by e logice!
processor of its own. ..°. elsc the rendezvous is descridbed without eny reference to o
structure. And perheps it is not o csse thet other sementic models for Ade (e.9. [Bjorner et ol.
80) [Dewsr et ol. 83]) heve sdopted eimost the ssme spprosch. Environment, memory,
dependences, snd other infor mation might be modelled as global and shared.

in conclusion this solution seems to evoid all the mejor dissdventsges of the previous csses,

\.‘I.‘l " :1:‘ :
" SRR




- ad .
X \: TASS
1:_ N
N ! Pm 20 ::\
o )
’ though it 1oses some of their advantages.
- However note that modelling all the tesks ot the ssme level, does not mesn thst we heve to )
-\.; abandon en appropriste structuring globel informetion (e.g. scope-driven for environment and ::"
g~ store). '
i
= .
' -
AN S
-~
& =2
R “
: W:-:
ol _'.:.
- -
X .
3 -
v'l v ]
T2l

vyl
X

Pl ol ol




Qrar
Format
Defimtion
ot Ada

3.0 GLOBAL INFORMATION

In this section we illustrate the requirements (end their motivations ) sbout the structure of the
globel infor metion in the linearized tasking mode).

in the SMoLCS epproach the local infor mation of & subsystem is not directly visible from other
subsystems ot the same level. This implies thet whenever o subsystem needs some locsl
informetion about en other subsystem, it mey obtein thet either looking in some globsl pert
(globe! information) or by mesns of ¢ synchronized ection with the other subsystem during
which the needed infor mation is received.

Unless we want to mode! non-10cal memory and environment accesses by mesns of synchronized
octions (with an unplimnt confusion in the representation of concurrent and sequential sspects
of the language), we heve thet memory end environment should surely be shered (globel)
informetion, es well o3 other information, like dependence relationships, tesk stetes end entry
stetes, which is in genersl needed by more then one task.

On the converse, the informetion used only by & single tesk might be represented ss locel
informetion of the tesk itself (for exomple the set of the nomes of the tesks to be ectiveted after
the elsboration of s declarative part). '

An overs!! mete-requirement over oll the structures within the FD is thet they should be kept
o3 abstrect o3 possidle, i.e. they should meke explicit only the semeanticelly relevent properties
for which they are introduced, without the eddition of implementstive deteils. Moreover
whenever possible, we would like to follow o stenderd wey in defining these structure (for
exsmple in the csse of the environment ).

3.1 Environment

it should be clesr from whet seid in the introduction, thet the environment represented in this
operstions! mode! need not to reflect ol the properties slresdy steted from the stetic sementics
step. This mesns thet the informel mesning of the “environmenmt® is not ¢ structure used to
represent the set of sssocietions (between identifiers and entities) which are visidle in o
certein instent, but rether ¢ structure used to meintein the needed sssociations in order to
mode! the execution of an Ade progrem (these essocistions mey be more then the really visidle
ones, provided thet the resulting effect does not chenge ). '




.'
N ne.
B PN -
£335
P
.’_,v
|y
rd

Sl e
I

Page 22
"
We think thet the environment should include only those sssociations, between identifiers and "
«. Ade entities, introduced by the elsborstion of (explicit or implicit) declerstions. Objects X
< (Left-Yolues ), which are not directly nemed by declarstions (e.g9. subcomponents) should be .
B obtsined by the spplicstion of basic operstions (indexing, selection of components) over -
oo composite objects. o
-3 .
3 Inour model we would like to follow the stenderd style, where the environment is stetic outside o
¢ declarstive part, §.¢. where sssocistions cannot change os 8 side effect of stetements. =
- 2
’- It is not s0 obvious that this is the most correct model for the environment in Ads, becsuse of the
'_ presence. of dynemic objects ( objects whose internel structure mey chenge o3 effect of o
‘statements ) o8 {s fllustrated in the following example: |
% -- ¥ is an unconstrained variable whose type is R
‘ «h» Y= (3,00, ,c")); type R (N :integer:=1) is
¥ s recerd ]
YTEXT(S) = ('d'); TEXT : string(N); =
== it reises CONSTRAINT ERROR ead recerd; 3
«B»  Y:=(5,(¢,e.T,9,N)); -
Y.TEXT(S) := ('¢’); .
- it works successfully '.jzj‘
: It is not clear thet the denotation of ¥ should be considered the same (st <cA>> and <<B»), =
:: provided thst the applicstion of o selection and & subsequent indexing operstion on ¥ produce
different results (o3 Left-Yalues). N
‘ The problem srises essentially if we want to consider the infor metion sbout the structure of ¥ as L
7 part of the denotation of ¥. -~
; -
'f Even sssuming thet dynemic objects do not creete any probliem, we ere not ellowed to consider il )
P the essocistions of the environment es constent ones.  In fact, because of the two step a
’ introduction of entities {program units, tesk types, deferred conc’snts, incomplete types, )
: recursive types) we must explicitly des! with updetes of slreedy introduced denotations in the N
b environment. ¥
' a

v
e em. ma




(A

T e

Deak
Fma
Definition
of Aaa

This “limited kind of dynemicity™ however hes & deeper influence, on the structure of the
environment, then one would expect; for exsmple it does not sllow to pess to esch construct 8
copy of its own environment, avoiding in this wsy the existence of en explicitly shered
environment (es it usuelly heppens in the standerd sequentisl cases). Problems, in this cese,
result out of the combinstion of the mixing of concurrency and of the two step {ntroduction of
entities (ss illustroted in the following exsmple ).

=5

Page 23

[ A h ‘-’

773

i~ . == within e decleretive part

b task type T; - - anincomplete task type specification is introduced
":_‘ PR

N packege PACK is end PACK;

. peckege body PACK is
E‘ task INNER;

task bedy INNER is -- g hew task [NNER (using thet specification es &

; type A is sccess T; -- complete specification ) is then created

- REF :A; '
i . begin
2, REF :=maw T; == INNER will activete ¢ new instance of T
g'.: edT;

begin

r , aull; - - the tesk INNER is now ectiveted (during the

. ond PACK; - - elaboration of the body of the peckege PACK )
i" tesk bodyTis ... endT; - - then the initial specification of T is completed
ET" in this example it happens thet o task INNER, which hes visibility of en incomplete specification
3 (T), proceeds in parellel with the elaboretion of the rest of the declarstive pert. When the tesk
‘,‘,. INNER activates the instence REF .11 of T, if the body of T hes not been slready elaboreted then s

PROGRAM ERROR exception should be rsised, otherwise the tesk eoctivetion proceeds
successfully. This is an evident example thet, when the tesk T is defined (or even gctiveted) (in
our case INNER), it connot receive o copy of the existing environment, becouse this
environment mey still be updeted.

mr T

Ingensrel, neme resolution (see the Overview) is not sufficient to uniquely identify the ectue!
entity denoted from en identifier ot o certein point of the execution. This is o direct consequence
of the existence of recursive subprogrems, of subprogrems shered smong tssks end of tesk

L=
L




Orant
Formal
Definition
>f Ada

-
-
1)‘
&L

Page 24

L CAAA K

types (each one of the three cases would be enough). So we need some other kind of dynemic
informetion inorder to identify, ot o given point of execution, the correct entity essocieted to an
identifier ( we shell call “environment-selector™ this information). We can observe thet for
sequential 1angueges, in which we are able to pess to each construct its proper environment, the -

»
i
va

- -

n"'.
:3« structure of the environment itself can be s simple mepping from identifiers to denotstions. In v
our case the environment is unique and shared; consequently it is more complex, for example it -
E mey heve the form of o mapping: -
v, -
K (Tecal-enviroament-selector x fdentifier) --> demstation. 5
kY We can observe how, in our case, the local-environment-selector plays the same role of the
.~ environment for sequentisl lengueges (s3 velue psssed from e construct to snother modelling -
4 fn on sbstract way the present stsck) . During the elsborstion of esch construct, the present &t
-~ local-environment-selector should indeed record the position, in the “cactus steck like® v
2 structure of the globsl environment, corresponding to the present snvironment . -
‘ - we do not discuss deteils about the structure of denotations in the environment, becsuse it this is
sti}] metter of more deteiled modelling. N
g. 3.2 Memery Strectere -
ﬁ: PN
y We recall thet even in this csse we should not give & particular implementstion with o structure )
- o8 “cactus stack® or “heap” but rether we should try to specify in en ebstrect way the o
N requirements over the structure of the storege. .
Inour mode] we suppose thet the memory is 8 unique, globel snd shersd structure, contsining el
- the sssocistions between objects end their values.
~ -
. In o different model of memory we might represent ss globe! only the part of the memory -
explicitly shered between several tasks, still representing es locel informetion of & subsystem nd
: the locel pert of the memory of & sequential tesk. We do not 11ke this solution beceuse in Ade it is N
- not essy to distinguish between the locel and the shared pert of the memory of o tesk (which N
E remeins locs! until some fnner tasks sre sctivated). a
o The memory description, s {t sppesrs from the manual, t is not very abstrect beceuss often it i
é refers to implementation dependent sspects of the lenguege. ,:




%‘ Dran 3
Formal

Cefnier =

i ¢
Page 25 )
o

! Moreover o reslly complete definition of Ade should not evoid to describe (st lesst some of ) -
> these implementetion dependent festures of Ads  (for exemple the ‘SIZE ettributes or the f‘_‘_
f" STORAGE_ERROR exception) though the description of these festures should be done without sny N
! loss of ebstraction, for example by mesns of o peremeterized specificstion. Al these { \
implementation dependent sspects might be introduced in fact 63 paremeterized sspects within s : 'j
E‘; unique store specification (ss ADT). )'_::
. 003
gf. As for the overall structure of this storege model, it should be seen essentiolly &3 o mepping *';'.
] from L_Yalues (Objects ) to R_Yslues (Yelues)(ss in the stenderd cese). As inAde objects and am
o values can be composite, we can heve thet both R_velues snd R_Yelues mey be complex (for ol
example in the case of array); in this case we should be able to get the L_Yelue of a component 3
o from the L_Yel ue of the whole object (and the ssme for the Yalues). o
& The correct correspondence between L_Yelues and R_Yelues might be stated by formulss within &
.. the storage specification, steting for example thst the ath component of & R_Yslues
I (corresponding to sn srray value) of o L_Yelue L should be equal 1o the R_Yalue of the oM =
component of L; ie. if A is o Left-Yelue corresponding to en errey, R the “Rigth-Yelue® f-":j_

i function (which given o L_Yelue and & memory state returns the corresponding R_Yalue) end | =2
‘ eRigth-Yelue (R(A m)) (1) = R(A(I)m) . el
B This issue hes been trested in & more complete way in o separete report [ Reggio 85). _ :-
B In en even more sbstrect model we could evoid to introduce explicitly L_Yelues, directly e
" representing denotstions es structured “complex™ R_Yelues in the environment, tresting in en :_:-..
- exiomatic wsy problems sbout renaming end subcomponents.  This lsst solution, even if
i5: fessible, seems too much abstrect with respect to the Ade menuel (in which objects ere o

i mentioned explicitly). s
B Y
o 3.3 Other Informetion ' 'E\

’E}f As olready seid the infor metion sbout o tesk needed by more then one tesk, which cannot be >

" obteined with & synchronized sction, should be represented s glodel.
i R
The infor mation about tesk dependences is just en importent exemple. It might be represented :-Z;::.

ﬁ sbstrectiy es ¢ reletion between mesters. This infor mation should be globel fn order to mode! in Y2
o simple wey stetement like sbort T, or other dependence driven (synchronized) sctions (e.9. o
E termination). 1';:
e

! State attributes of o tesk, like “octiveted”, “termineted™, “terminetable™ and so on, should de =
B-35 =

SRS I e - ote e . A A LI L S ..'.._-
e, ‘i'.xi..l“.f.q.’ “"..‘h.‘-' {.‘-.-‘ CREAE ISy 2 : DR . ) ".' N ’.‘l "' "



...........
......................................

Page 26 ::«

Qlobal being obviously updeted from the directly implied task (octivetion, terminetion), but -

8lso used by the creator {which is not necessarily the mester) task (inorder to verify the .
terminstion of the activation of the crested tesks), or used by other tssks ( rendezvous,

ter minetion, ebort etc. ). =

e

All the infor mation sbout queves end entries {e.9. for the representation of conditionsl entry "3-'

calls) should be globel too.

£

A compete definition of these structures can only be completed during the formal definition, and »2

is out of the scope of this report




v R

oo
Jrant
Format
Definition
of Ada

Page 27

4.0 THE ATOMIC ACTIONS PROBLEMS

A formel definition of the concept of “etomic ection” of o tesk cen be given only in the fremework
of ¢ fully methemetical model. ti'wover with reference to o model besed on labelled transition
system, we con think of sn stomic action first es s labelled transition s.t. the inlermediete states
ere not observable and hence not relevent to the overall semantics of s program.

On the contrary the beginning and the end of an stomic action merk the ststes in which s tesk can
interect with the system, interfering snd/or being interfered.

The prodblem in Ads is that the beginning and the end of an stomic action sre not given simply by
the various synchronizetion points or by the beginning and the end of ¢ concurrent sction. Due
to the possidility of abortion, the csse of shared verisbles and the obvious fect thet the
eveluation of expressions can involve the execution of subprogrems end tssks, even meny
spparently sequentiel ections heve to be split in more elementery actions in order to hendle
properly the concurrent interaction smong tesks.

A second, now methodologicel raqhi rement over the stomic actions is thet their length should not
be longer than the execution of o single Ads ststement (or decleration), provided thet we are
interested in o syntax directed style in the description of the sementics of the lenguege.

But in genersl we heve thet the effects of en Ade stetement are too complex for being considered
o3 stomic end should be specified agein o3 & set of possible sequences of stomic ections.

Even looking ot the menue! we can observe thet the effects of o statement (or decleration) ere in
geners) descrided by e sequence of smeller ections; this is obvious in the csse of compound
statements, but in general it happens so for “terminel” statements (and declarstions) too (eg.
sssignment, sbort, exit, ... ).

For example, in the case of an sssignment, we heve to eveluate sn expression and ¢ neme in
order to proceed with the update, ond both the eveluations mey involve (by means of function
calls) on unlimited smount of activity. Then it seems ressonsbdle, still from s methodological
point of view, to follow the style of the menuel in the description of the effects of o conatruct
(decomposing stetements and declarstions fn smeller pieces), ot least yntil tMs description is

driven by the syptectic structuyre of the construct.

On this ground, in the end stomic ections should not be longer then the sleboretion of o
“terminel” construct (e.g. nemes, litersls, besic operstors,.... ).




Page 28

Obviously, we still have to verify thet it is correct to mode! such elaborations stomically, end
for doing this we need to state some kind of requirements over the observable beheviour of these
elaborations.

Whet we require from such elaborations, in order to be sllowed to be considered stomic actions,
is thet they should not have observsble “intermediate states™ (in the sense that their
intermediste stetes should not influence the behsviour of the rest of the sysiem nor should be
influenced by it). Non-stomic elaborations should be split egain, until stomic ections sre
found.

Ye can observe thet in some coses the mentioned eloboretions ere still too complex for being
modelled os stomic. Indeed the concrete syntax of Ads sometimes hides long sequences of
elaborations possibly heving the same complexity of the whole program.

With our requirements, spert from some “hiding" constructs, most of the elaborstions
corresponding o “terminel” constructs, seems to_be otomic. In fect the grenulerity of these
sctions already solves the problems of synchronization points or concurrent interactions.

The possibility of becoming sbnormel, snd hence completed premsturely, might influence the
stomicity of en sction; however though en ebort stetement con interrupt the execution of en
action, it should not meke observsble the “inter mediste states” of the sction itself.

An interesting exsmple of interference of the sbort stetement with sn stomic action is illustrated
by the update ection. Indeed when & tesk becomes completed while updsting & varisble, it is
specified from the meanuel thet the velue of the variable becomes “undefined”. This explicit
remerk of the menuel allows us to consider ss stomic the updste ection (even in the csse of
updetes of structured verisbles like arrays), becsuse the effects of the interaction of this
sction with the rest of the system still does not depend on the set of the intermediste states
reached by the action itself (even if it depends on the beheviour of the rest of the system) (the
situstion would heve been completely different if some “partisl updete™ might heve occurred).

The situstion is not so clear for many other actions ; for example it is not clesr whet might
heppen if an sbort stetement is itself premeturely sbondoned because of enother sbort stetement
(might only e subset of the required tesks to become ebnorme!? ).

Another issue is thet some of these elaborations corresponding to “ter minel constructs” might in
generel not be observeble (for exemple the eveluetion of & single name) ond might be “pecked”
with other ections.

3-32




5

—— vy
A A “ XA

e Tty
s

A

.........................

“he .
Dran
Formal

. Defiition
of Ada

Page 29

S.0 OTHER ISSUES
S.1 Explicit Time

A complete definition of Ade should describe oll the time-dependent festures of the lsnguage.
These features are related to the existence of s predefined "CALENDAR™ peckege, and to the
existence of explicitly timed stetements.

Some more sophisticated problems sre related to the duration of other (not explicitly timed )
statements.

The CALENDAR peckege provides o CLOCK function returning the actuel velue of the time (see
LRM 9.6 (7) ); obviously this is an implementation dependent festure snd should be trested in
8 perametric wey.

It seems ressonable thet subsequent invocations of this function return increasing velues of
time; but this is not explicitly steted in the LRM.

Our approech csn sccomodete any of the officisl interpretation that con be taken in some future.

The effect of ¢ single delsy statement can be observable within e program, es it is illustreted by
the following progrem fregment.

t s CLOCK;
delayg (n);
newt ;= CLOCK;

the value of newt should be ot least t+n .

e must note thet in the CALENDAR peckege appropriste “+° end “<* fyunctions sre defined,
ellowing to sum & TIME velue (returned from the CLOCK function) with & DURATION vslue

(possibly used s psrameter in o delay statement) and ellowing to compsre two different TIME
values.

Anslogously the effect of o deloy alternative within o timed sccept stetement is observeble, &s it
fs illustrated by the following program fregment:

WATE LS.

»

O AL
I*‘-~l~’

5

DR -,
R A, |

Y i e

LN ] - e
« .' I. .'- .
o N ‘v.\ LR

h T 3o By e N
O R
SRER

N

e e
'l » ’ d‘
2 % S N s

,.2.3.,
Py Lol
S
[N P vy )

' ND)

~
o
R
'I\)I
) -
l‘. -
RS
l..
A
o




- - W

¥ e's

". Il ’4 Jl .‘l 'l Jl

P

Al T A T AN v _ s L e A S A e e R D el Y

31

mwe

ot
]

1l
0N
Ja

g

\

aa

I

Page 30

{:=CLOCK;
select
eccept t
or delay (n); t' :=CLOCK;
end select;

the velue of t', if the delay elternative is execuled, should be ot lesst t+n .

Nevertheless we are sware thet this is 8 perticulsr interpretation of the menuel, which reslly
ssys nothing sbout the sementics of time; note however thet the eabove interpretation is
supported by the existence of some ACYC tests checking for the verification of the illustreted
properties.

We believe thet & formel trestement of the timed constructs should iske into sccount these
intuitive properties, for exomple modellirg explicitly the current value of time.

S.2 Parallelism

We must observe thet the LRM clesrly stetes thet en implementation is ellowed to perform
contemporaneously any group of eligible { nonexclusive) sctions ( 9.0 (2) ).

Moreover it is said thet the durstion (relative speed) of the sctions is not specified { 1.1.1
(12) ).

Thus if it was not for the presence of constructs with an explicit reference to the priority
festure, we can model & parailel execution by ellowing, ot each execution state of the system, any
group of eligible actions to be performed in parellel. in s SMoLCS model this is dealt with by
defining & free- pareliel monitoring (see [Astesianc et al. 85 b] for en example ).

Introducing priorities implies thet st monitoring level we heve some monitoring infor mation
related to tesk priorities and thet perallelism is free except that for priority constraints.

However the only constraint thet the languege seems to stete is relsted to the beheviour of o
selective eccept statement, when tesks with different priorities ere queued (and hence eligible
for exevution if the corresponding entry is sccepted) on different open entries.

\."- -

|l




A TR T W

-

The

Draft
Forma!
Definition
ot Ada

S.3 /mplementation Depeadent Aspects

The implementation dependent aspects of Ads are of very different kinds.

Some of them ere not explicitly implementation dependent features, in the sense thet en
implementation is not required to give sn sccurete description of them in some “sppendix” of the
menus!, and sre treated in the language s explicit forms of non-determinism (which sn
implementation is allowed to restrict, but which ¢ prograsm is not sllowed to test). Notorious
exemples of this kind of "implementstion dependent™ sspects are the orders of elaborstion of
some constructs, the techniques for psrameter passing, end %0 on. In these cases, even if an
implementstion is sllowed to restrict the sliowed non-determinism, o formel specification could
not avoid to describe a1l the possible slternatives.

A similer example of the sbove mentioned nondetermism of the lsnguage is releted to the
concurrent sspects; each implementation can provide 8 particulsr scheduler, monitoring in its
own way the relative speeds of tesks, and competitions in rendezvous. In this case 8 program is
sble to detect the implementstion choices ( ot least in part), even if o formel specification could
not avoid to describe sil the possible slternstives in order to define the correctness or the
uncorrectness of a program.

A completely different kind of impiementation dependent sspects of the languege are, on the
converse, those sspects which should be explicitly described and fixed in some appendix. For
example the definition of the type PRIORITY, DURATION, the velues MEMORY_SIZE, MAXINT, the
set of predefined numeric types, and so on. These sspects perhaps should be trested in s
perometric wey in the formel definition, beceuse their non-determinism is not dynemic but
fixed "o priori-.

Another very different kind of implementation dependent features is related to the use of
low-level focilities of Ade , ¢.9. essocistion of entries with externel interrupts, use of mechine
code insertion, mepping of objects st explicit ADDRESS velues ond so on. ( [t is not syre thet
this sspects should be modelled , and how ). These sspects are not very interesting to be modelled
fn the for mel definition.

A more precise report on these issues (including 170 problems) is stil) in preperstion (see
[Fentechi etol. ] for more details).

AN




I

Z

6.0 CONCLUSION

The motivetions of the choice of & model have been illustrated. In particuler the sdventeges of o
Nt (single level ) structure sre explained.

Some hints on the trestement of timed constructs and other implementation dependent sspects of
Ade heve been given.




G
-~ Dratt
Formai
Definition
of Ada

I
Lo
I
! 7.0 REFERENCES o
g2 53
A [Astesisno 84] ASTESIAND,E. Combining sn Operations! With sn Algebraic Approsch to the s’\
- Specification of Concurrency. To sppear in Proc. Workshop en Combintig Methods Yol
L (Nyborg, Denmark, 1984), also in Cnet report n. 127, December 19684
E’ : {Blum 84] BLUM K. An Abstract Systems Model of Ade Semantics TRW Redondo Beach CA,

' August 1984,
~ [Astesiano et o). 85 ¢ ) ASTESIAND,£. MASCARI,G. REGGIO,G. AND WIRSING,M. On the
= perameterized algebrsic specification of concurrent systems.Arac. CIF 85- TAFSOF}
L‘s conference, Berlin, Springer LNCS 185, Merch 1985.

{Astesiono et o). 85 b ) ASTESIANG,E. AND REGGIOG. A Syntax-directed spprosch to the
semantics of concurrent langueges .Preliminary report, Mey 1985.

" [Plotkin 81) PLOTKIN ,G. A structursi spproach to operational semantics Lecture notes, Asrhus
University, 1981,

e

" [Berry 711BERRY, D.M. {ntroduction to Oregano, Arac. ACA SIGFLAN Symp. - Dets Structure:

o : &d Programming Leaguepes, Gainsville, Fla. Feb. 1971,

o [Johnston 71} JOHNSTON, J.B. The Contour Model of Block Structured Processes, Arac. ACP:
SIGFLAN Symp.~ Dete Structures end Frogremming Lengueges, Gainsville, Fla Feb. 1971,

{Bjorner et o1. 80} BJORNER,D. AND OEST,O.N. Towards s forme! definition of Ade LNCS 98,

Springer 1980.

- [Dewar et o). 83) DEWAR, R. FROELICH ,R.M . FISHER,GA. AND KRUCHTEN,P. An executable

:I'-: sementic mode) for Ade, Ade/td interpreter Ade Project, Courant institute, NYU 1983,

v

ﬁ [Reggio 85) REGGIOG. A proposel for en abstract storsge mode! Working paper Ade_FD,
April 1985,

o

o {Fentechi et ol. JFANTECHI A. AND MAZZANTI F. Notes on the implementation dependent

B T L S PR Y
RN S
A e

ORI AT AT LSRN TR T TN
e e T RN oY e e N



% A

et s &

e e e

Formal
Defirution
ot Aga

festures Working psper Ads_FD, in preparation.

Page 34

T

I3u DS

'&’ﬁ-’\’ ' IL' N

'Ll\l"

J

TR ™

TR P

LA RARIES e 4 s 4.

Ly



' ) ' e
0 &.,5
’ The Draft Formal Definition of Ada® =
s \ N
A Commission of the European Communities: Multi-Annual Programme N
t- "
-
. Y
Lo
-\ (:"'
N FORMAL SPECIFICATION AND DEVELOPMENT OF AN ADA COMPILER- g
A VDM CASE STUDY RN
A o
Geert B. Clemmensen -I:‘,'\:'
\¢ ]
-2 Ole N. Oest ._::t-»
A RIS
k December 1983
P4
)

RN
(AP

B-95
*Ada 18 8 10giNred radeMe:n . ww U.S Govemmaent (Ads Joint Program Ottice)

S, et e, «1a et LT TR T N I L U P AL IRUC IR N N
..... N LSRN . RN
oy ¥, A.L‘..\L‘:..'f.._e. S Zn.m"‘-;_J.-u.q.; UG




PREVIOUS PAGE
IS BLANK

FORMAL SPECIFICATION AND DEVELOPMINT OF AN Ada* COMPILER

= A VDM CASE STUDY

Geert B. Clemmensen and Ole N. Oest

Dansk Datamatik Center
DK-2800 Lyngby
Derrmark

ABSTRACT

The Vienna Development Method (VDM) has been
eployed by Dansk Datamatik Center (DDC) on a
Jarge-scale, industrial Ada compiler develcpment
project. VDM is a formal specification and devel-
opment method in that it insists on the initial
specifications and all design steps being express-
ed in & formal (mathematically based) notation.

‘This paper gives an overview of how VDM was used
in the various steps of the DDC Ada project, and
we gquide the reader through the steps involved
from the initial formal specification of Ada down
to the actually coded multipass compiler. Finally
we report on the quantitative and qualitative
experiences we have gained, both as regards the
technical suitability of VDM for the project and
as regards the implications on software management
and quality assurance.

1. Introduction

This section gives an overview of the Vienna
Development Method (VDM) including its application
in campiler development (subsection 1.1) and of the
DOC Ada Corpiler Project (subsectian 1.2). Then
section 2 describes how VIM was actually erployed
on the IOC Ada project taking into account the

cal restrictions, same stemming from the
kind of host and camputers, others sterming
fram the changing environment (three Ada Language
Reference Manuals were issued during the project).

Section 3 exanplifies the application of VDM in
the development of the code generator, and finally
section 4 reports on the experiences gained with
VM.

1.1 The Vienna Development Method

The Viemna Development Method wes initially
developed at the IBM Laboratory at Vienna in the
early 1970's for the purpose of the definition of
a large subset of PL/I [1], and the subsequent
development of the corresponding campiler. VIM is
based on the approach of denctational semantics,
and should not be confused with the earlier work

¥) Ada Is & registered trademark of the U.S.
Goverrrment, Ada Joint Program Office

of the 1BM Vienna Group, namely the specification
language VDL, in which PL/I1 was specified in the
late 1960's, and vhich relies on operationa)
semantics. VDM uses a metalanguage known as
*META-IV" [2] based on sugared lambda calculus (4]
and ScottStrachey domain theory [15). But VIM is
more than just a meta-language: a number of qeneral
approaches developed elsewhere has been incorpor-
ated into VIV, most notably stepwise refinement

of functions as wel) as of data objects. VDM
further contains a number of specialized
approaches: in the area of programming language
definition and campiler develcopment VDM offers a
specific set of guidelines thought of as a
"cookbook” prescription for the work to be carried
out [3]. As a part of reporting on our experiences,
this paper explains which deviations fram the
"cookbook" we had to make, and why.

Generally software development proceeds as follows
vhen using VIM:

A specification of the software to be developed
is given in the form of a model, that is as
operations (functions) on cbjects representing
the input to and the internal state of the
software, and yielding cbjects corresponding to
the output and the changed internal state. The
model is formal in the sense that it is expressed
entirely in the meta-language, and it is abstract
in the sense that it is free from details
concerning the eventual implementation (functions
are often defined implicitely rather than via an
algorithm, and the actual representation of the
objects is not considered at all. Objects can be
abstract (e.g. recursively defined sets and
mappings) with no counterpart in the implementa-
tion language). Classes of the cbjects involved
(damains) are explicitly defined by so—called
domain equations ra than implicitly defined
(e.g. by axiams).

Then a series of more and more concrete specifi-
cations (called "designs”) are worked out. Each
design is derived fram the preceding, more
abstract specification in that either the objects,
or the cgperations, or both are "refined” into
corresponding ob and gperations more close
to the final inmplementation. All specifications
are expresseld in the meta-language, and the more
concrete they became the nore implementation
details will be dealt with. Ideally the derjvation
of a more concrete specification is done formally

1983-12-31

’

.
2 2 0 i

'."I S S

v
MG

I

-

v r
vl
, "

AN ey
'l "',.l ‘.




| AR

a

PP

.
g

() [N N T} [
QAN
L TN PN

LR

by writing functions that “generates” the lower
Jeve)] objects, or by writing the so-called
retrieve functions which, given the ohjects of a
certain leve), “retrieves” the corresponding
objects of the higher Jeve). It must then ~ in
either case - based on these functions, be proved
Or argued that the derivation of the rations
are correct. In practice, 8 Jess formal transfor-
mation from one level to the next takes place,
cf. section 3, and as generally discussed in [12].
In certain application areas overall guidelines
exist for the derivation of designs: however,
rost of the derivations one has to carry out are
based on experience and skill. As regards the
transformetion of objects (e.g. mappings into
tadbles), verious standard exavples exist. Refer

3.
VI¥ in corpiler development proceeds as follows 3

The departure point is a8 forma) definition
preferably in the denctationa) semantics style of
the Janguage to be conpiled. The use of a formal
Gefinition of Ads as the basis for compiler
construction is also advocated in [7). Such a
definition has three canponents in the case of
Ada 1 A definition of the static semantics (SS),
® definition of the dynamic semantics of the
sequential constructs (DSS) and a description of
the dynamic semantics of the parallel (tasking)
canstrocts (DST).

The static semantics takes as "input” an Ada
carpilation unit represented in an abstract

syntax AS1. The 5S checks the corrrectness of the
wnit, and trangforms it into another abstract
syntax, AS2. In AS2 all information vhich is only
relevant far the static semntics has been remved.

The formulae of the dynamic semantics assigns
“eaning” to the compilation unit represented

AS2 cbjects. -

AS]1 and AS2 are based on an abstraction of the
concrete syntax of the language being defined, as
:;. c%;gjﬂu DIND intermediate language for

The front en? cowpiler is derived from the static
samantics, and the back end corpiler (code genera-
tor) is derived from the @ynamic semantics for the
ssquential constructs. The dynamic semantics for
tasking constitutes the departure point for the
tasking kemmel in the nn time system.

AS] and AS2 wil] thus have their counterparts as
intermsdiste Janguages in the cotpiler implementa-
tion. As the 55 and DES specifications will have
:o be lpu:‘m several passes, wore intermediate
anguages will emerge Auring the design process.

The specifioation of the angc mﬁg is culled
8 cpiling adgorithm (CA), as it shows which
eode to gunerate for each construct in Ada (AS2).

J6eally & mcro expansion step between the IBS
and CA should be taken :+ The macTo step gensrates

‘mets-language” rather than actual code, a~d
allows for experiments with the actual run tire
system administration tefore details of the
actua) cofle is considered.

1.2 The IIC Ads Comiler Prosdect

Dansk Detamatik Center (DDC) is involved in the
develomment of an Ads cotpiler as » part of the
Portable Ada Programming System (PAPS) prosect.
The PAPS project is being carried out by Olivetti,
Italy, Dansk Datamatik Center and Christian
Rovsing A/S, Dermmark, and will result in a progra~
ming environment initially hosted on and targeted
for two 16 bit mini-computers, namely the Olivesti
M40 and the Christian Rovsing CRBO. The project
includes a kernel operating system for Ada,
various tools, an Ada corpiler, and 8 hiah level
machine for Ada. The project is partially funded
by the European Counmity.

The host and target computers in question have
imposed a murber of restrictions an the project,
the nmost severe deing that the corpiler should
£it within 80 K bytes of code and 110 K bytes of
data space. This has influenced the design of the
carpiler considerably: A multi-pass corpilation
technigque has been chosen, with a total of 8
passes, and the tree-structured intermediate texts
are linearized and scanned sequentially by each
pass. The caplete trees are thus not residing in
internal merory: the syntol table, however, is
placed in a software paged mwrory, administered
by the canpiler itself.

This design had some implications on the wey VIM
could be used on the project.

2. DPrloyment of VIM an the IIX Ada Protect

The goal of the DIC Ada project is the developrent
of a portable Ma cotpiler written in (a subset

of) Ada ftself. Hance, » bootstrap tool is
required. This too), which is 8 source to scurce
translator mepping Ada onto & medium leve) language
SWELL, wvas also developed using VDM. This tool,
clled RLC-Ma (Source language Conversion of Ada),
was irplerented in Pascal.

The two parts of the project, the deweloprent of

SlC-Ads and of the Ada compiler, are treated

:‘qnntcly. as they have quite different characte-
stics:

The development of the SIC-Ada translator could be
considered as an intermal effort of modest size.
Little interaction with groups cutside the IXC
was necessary and the Ada subeet chosen was
stable during (and to a Jarge extent after) the
developrent phase 30 this sub-project could be

managed with it le effort and it could be carried
out by a smal) group of 3 to 4 persons. This
simplified the internal communication in the
group. The sub-project vas earried out in a
little less than one year calendar time.

..
l"La

2

AN

€

r Ny
.

L

-
.

fe

18

y ou
A s

v. ."1

Py 3
e,

%)
-

‘

Tals,

AA




<y W

i
»
.

gt
o

-

R

f
A

The development of the Ada compiler, however, was
a large scale effort inwolving 10 to 14 persons
over » three year period, and inwolving interna-
tional cooperation on interfaces within the
campiler as well as between the compiler and the
environment . Further the Ada language fluctuated
quite heavily during the project period (probably
wore from a campiler writers point of view than
as seen fram the average user of Ada). Not only
did we see three issuves of the Ada reference
manual during the project, but we also saw
inbetween these issues various ~ mutually and
intermally inconsistent ~ interpretations of the
Ada reference manual (the Softech Implementor's
guide, the Ada Question/Answer mechanism on the
ARPA-net). This influenced the project to a large
extent, and implied a rather pragmatic use of
VIM, as the goal of the project was to came out
with an up~to-date campiler, rather than to
maintain a coherent set of formulae through all
development steps. On the other hand, the
obligations to the "outside world" required that
a high anl consistent level of documentation had
to be maintained. Thus a careful balance had to
be made.

It should be mentioned here that we had no tools
available to support the development of the
forma) specifications, to check their consistence
or to help in the refinement steps. VDM was (and
still is) a paper and pencil method although
steps are being taken now to develop support
tools. :

SLC-Ada

The subset was chosen according to experience
with earlier program and compiler development.
The quiding factors were:

1) the Ada subset was toO be used as implementa-
tion language for a 100.000 lines project,

2) straightforward implementability of the
selected features. .

The static semantics of the subset was described
in META-IV, and the dynamic semantics was
described by giving a compiling algorithr mapping
the subset into SWELL. As a parallel effort
outgide the PAPS project a formal description
(static and dynamic semantics) of SWELL was worked
out. The formal description of the subset was
intended to form the farma) specification of the
campiler and was hence written with same thoughts
about implenentation issuves.

The translator was coded by a rather direct,
manual transformation or rewriting of the static
semantics and the campiling algorithm in Pascal.
This resulted (in addition to the scanner/parser)
in one pass handling the static semantjcs, and
ane pass perfarming the source translation. Due
to remory restrictions it Jater became necessary
to split the static semantics pass into three

B-979

M.,
-

O,

separate passes. This was done without introducing
different intermedijate languages. Al)) passes
{except the scanner/parser) work on the same
intermediate language (and repeats certain
operations). The mechanisms for the separate
compilation, the scanner/parser, the run time
system and the Ada linker were developed by
traditional means.

2.2 ‘The Ada Cowpiler

The development proceeded in this case through
four steps:

1: Development of a formal specification of Ada.
The static semantics and the sequential part
of the dynamic semantics are specified in the
denctational semantics style, whereas tasking
is specified by an operational medel [8],
{91, [10], {11].

2: Development of a formal specification of the
cawpiler parts. :

3: Development of a more detailed formal specifi-
cation of certain campiler components and
passes .

4: The Ada program structure is decided upon:
the specifications are broken into Ada
packages, and implemented in Ada.

Application of steps 2 and 3 to tha Zrcnt end
campiler involved:

step 2:

- {dentifying items governing the arcup o, of
static checks (dependence on camlezcuess of
symbol table contents, on degre: o7 Over-
loading resolution, on evaluatichn f s=ztic
expressions etc.),

- classification of the static checks (base »

the formal specification of Ada and on the
items jdentified above),

- distributing the static checks to the passes
based on a topological sorting of the checks,

- formal specification of the passes and
intermediate languages,

= defining the intermediate languages between
the passes of the front end,

- specifying for each pass the transfom;ion
from the input intermediate language to the
output intermediate language,

- specifying a symbol tadble handler.
step 3:
= for same parts derivation of a more implementa-

tion arjented specification: for the remaining
parts the formulae of step 2 apply.

. -, e e et e T T T e et T Nt e e aN e T e T
o . \'-.A. _‘-.\- . a N o _‘-“-1 \q.\- \-\\- ,‘-.\i\. TSN .‘.‘-_.. oy CY
] N h

.‘_l'-"-."' s

04y e b
B

b

D
E N

"
¢’
RO

oy,

1
»

s

MR SRS
el e
o ‘4 A..c + _Q','

‘o
P
L
N
§

.I .l

[y
3 a0 b

7
[
s

r
’A

g o R )

AR
. A
‘, 2

N

8y %,
.

LR

‘l

3
,
o
PR}

N 4 ¢
7%
a

K
. v
»
-

¥
A




a2 "e . s TV a -

The static semantics part of the formal descrip-
tion of Ada has some resetblance wit' a one pass
corpiler. No forma) methods exist to derive 8
specification of 8 multi-pass comiler front end
from such a definition. However, by ewloying
systemacy as described under step 2, we obtained
8 corpiler front end specification vhich tumed
out to be of a very high standard: It contained
rather few errors, and they were all easy to
correct. MHowever, as step 1 (and Jater 2) became
cbsolete with the new issues of the Ada languaae
reference manual, the specification of step 3 was
updated, proof-read and compared directly with
the text of the new manual . For each formula in
the specification, the corresponding test of the
manual was marked with the nurber of the compiler
pass, which handled that text. Finally it was
checked that a)] of the manual had been marked
up., and necessary changes to the formulae were
carried out.

Application of steps 2 and 3 to the back end
compiler involved:

step 2:

- formal specification of an “overall” compiling
aloorithm mepping the output of the front emd
directly into the A—code instruction set of
the high leve) target machine [6]. Note, that
the intermediate language between the front
end and the back end stens fram AS2: hence it
had only to be refined in steps 2 and 3, not to
be defined.

step 3:

= based upon this: decision on intermediate
lanquage levels and structure,

forma) specification of the resulting three
beck end passes and two intermadiate languages.

back end developrent is examplified in section
The specifications of step 2 above is based
ep 1 and the informally described changes of
., vhich tock place during the development of
step 2. Stap 3 wvas developed in 8 similar way.
Only the step 3 definitions are maintained up to
date with respect to the cwrent Ada definition.

The .énrncr/p-rnr and the separate carpilation
handler were developed using traditionsl methods.

In order to obtain intermediste milestones, four
implementation levels were defined whers each
leve] implerents more and more of Ada. This
division into levels wvas done based on the formal
specification, and largely only after the
development of all of the specifications. Each
leve]l has been tested thoroughly, both by the
original developers and by an independent group.

B--10

. o JTw e e .
------ “ "

S . _'.'_'.'_'. ROACINEIN A
RGN, S EAT ISR AU, S VeV N

3. A VDM Exercise

As described elsewhere in this peper, VDV is
based on an §nitisl formal specification onto

which 8 sequence of refinement steps are applied
in order to reach the fina) implementation. 1n
this section, the resder is guided more or less
informally through an exercise in VIV by showing
how the dynamic ssmantics of a specific Ma
construct is specified, refined and implemented
(in a subset of Ada).

To introduce some of the terms used in the fol-
lowing, the comwpiler structure is shown :

Ada -» Pront Pd - IMg => Back End ->» A-code
Within the back end the following structure exists:
IMg->Pass 6->IML7~>Pass 7->M-code->Pass 8->A-code

IMg is a tree structured intermediate language
which is camparable to DIANA [13) in level, but
corpacted and simplified. IM., is also 8 tree
structured intermediate language, but is aimed at
code generation for any class of target machine.
A-code is the code for a virtual stack machine
called the A-machine [6). Abstract A-code
(AM\~code) is 8 suitable abstraction of A-code
vhich esases the code generatjon, that takes place
in pass 7, and makes it possible to choose sTong
different implementations of the A-machine.

The Ads construct used as an exxrple is the
object declaration [14 section 3.2] :

objeet declaration ::=
identifier list : [eonstant) subtype indication
[:# expression]

subtype_indication ::= type mark {eonstraint )

As mantioned earlier. the forma) specification of
Ads has two main carponents, namely the Static
and Dynamic Bemantics. An abstract syntax of Ada,
called AS1l, forms the input to the Static Seman-
tics which also containe ~ transformer producing
the adstract syntax of the Dynamic Semantics.
called AS2. In AS2 the construct is modelled as
follows s

Object-del :: Var-id-set [CNST) Subtype-de! [Ezpr)
Varid :: JOKEN -
Subtype-def :: Type-mark [Constr)

Notice how close the Samain specification is to
the original Ada symax given above.

n
A

»

RS AT NN Y
Soice e R iendiind

s
Liremn AEERwSE

S S P S AN L




The elahoration of an Ubgect-del can now be
formally specified as :

elab-0Object-del(declleny =

let mk-Object-del(vide, enet, st~def, texpriadecl in
T {de] st : elab-Subtype-def(st-def)env; -
“lenst = CNST ->
elal-Const-del(vids, st, texpr)env,
r -
elab-Var-del(vids, 8t,icxprienv))

tipe: Object-del -> (ENV => ENV)
gre: The elaboratjon of the subtype definition
has no side effects

elal-Var-del(vids, st, iexprieny =

(def varenv : get-vardens(vide,st)eny;
Tiezpr = nil -»
for all vid ¢ vide do
T Tde] ival : get-init-VAL(&t)(CREATE)env;
assign(s-Varloc(varenv(vid) ), Tval]/);
return(warenv)),

r -
Jor all vid ¢ vide do
~de] twal : eval-EZpr(iexpr)(envsvareny);
#udtype-check(ival,st)env;
assign(s-Varloc({varenv(vid)),ivall);
return(varenv)))

type: Var-id-set Subtype-den [Ezpr]) -> (ENV => ENV)

The elaboration of an Object-del consists of
elaboration of the subtype definition (yielding a
so—called subtype denotation) and a new local
envirarment (elab-Const-del or elab-Var-del) in
which the cbjects are introduced.

The elaboration of a Var-del consists of creation
of a local enviromment in which the objects are
introduced and the evaluation and assigrmment of
either implicit or explicit initialization
expressions.

One important issue of the specification given
above is that all kinds of objects (arrays, tasks,
simple) are treated uniformly which campacts the
specification and eases the reading considerably.

When the formal specification fram the Dynamic
Semantics is to be refined (including both damain
and operation refinaments) into a so-called comp-
iling algorithm (code generator) specification,

8 nurber of important issues must be addressed in
order to guide the refinemant process.

Exarples are :
= how to implement the various kinds of cbjects

- elimination of checks where possible
- optimization of repeated expression evaluation

In our implementation we have decided to
distinguish hewteen the following object kinds :

- array

record

task

access

remaining and simple cbjects

In the followina we will concentrate on the simple
objects. .

In order to get same hints on how to direct the
refinement and irplementation process it was
decided to work out an experimental refinerent
step, transforming AS2 directly to pseudo A-code.
This so-called compiling algorithm sketch res:lted
atong other things in the notion of predicates.
Predicates are truth values attached to the
varjous nodes of IMLy and they express certain

properties about the sons of the nodes (i.e. they
guide the code generation).

The actual refinement steps can now be given :

AS2 > IM¢g : This refinement step is a step in
the design process and is not implemented, it
merely consists of a concretization of AS? into
IMg. The step is called & damain refinement.

IMLg => IML; : In this refinement step the various
objects (also types, subprograms, operators etc.)
are classified into the appropriate kinds and
predicates are evaluated. Essentially this refi-
nement step is also a8 domain refinement, although
not normally covered by the term damain refinerent.
The step is implenented as pass 6.

IM -> Abstract A-code : In this refinement step
the high level tree structured intermedjate
language IM.5 is transformed to a linearized
sequence of Abstract A-code instructions. This
step is the operation refinement step, and is
implenented as pass 7.

. Abstract A-code -> A-cade : This last refinement
step takes the Abstract A-code and produces the

final A-code. The step can be viewed as a post
darain refinement step which concretizes the
damains of the Abstract A-code.

Because of the rather wvoluminous specifications
of all the refinement steps, the previous exaple
will only be shown specified in the refinement
step IM) -> Abstract A-code.

In IM; the previous example is modelled as :

SimpleObjectDecl :: OBJECT-KIND Objldl
{SimpleConstr] [Ezpr)

OBJECT-XIND e ShortIntg | Intg |
LongTatgs | —£.
obj1di 22 len: DESCR-ADDR+

3-101

g ff_'{-'ff

L

P " ] -
- B B A a

[
g
fadi

Peks ,Al.,l-
Sty Syt T

0
.

!
~

[N
« e

PR e
4:&,.-4-;! Y{ ,‘- AR

. "f’f

Ve At v )

-

.",--—'l‘
ALY

Py e
.'.l.l p"'f'

’




Predscates :

SirpleConstwn-StaticEounds
Sim;. leComstmholosenheck
SimplelonstmNoUppem neck
SimpleConstn-NotNullRange

Ezpr-NoSidelffects
Ezprn-NoSubtypecheck
Expr=-NolowerCheck
Expr-NoUpperCheck

The Var-id-set of AS2 has now been converted to
® list of cbject jdentifiers which essentially is
8 list of symo) table references. Predicates,
expressing properties about the constraint and
the initislizatior. expression, are also evaluated
and made avajlable.

The elab-Van-dcl elabtoration procedure has now
become 8 so-called Carp ilin? Algoritrem formula and
is named C-Sirpledbjectdecl (shown below). Con-
stants are trezted no different than variables in
this implementation, but other implementations

may choose different refinement directions and
hence 8 different compiling algorithm and imple-
mentation.

It should be noted how close the compiling algorithm
formala is to elal-Object-del and elab-Vawr-del,

but it is also clear that the compiling algoritim
formula is more or Jess straightforward to implement
corpared to the eladoration formulas of the

&yramic semantics. The actual inmplementation of

the carpilino algorithm formula, in a subset of Ada,
is shown on the page following the formula.

0) C-SimpledbjestDecl(am,decl) =

L N S D T I I

Lzl a g w &t Ban e b e B dnd st Sl Rt Madl Al st

Sumvmarizing the steps involved :

1) A suitable high leve) sbstract syntax of Ada,
AS2, is defined and the dynamic semantics is
formally specified

2) AS2 is refined into IM, using so—called
domain refinements

3) The Dynamic Semantics is refined into a
Corpiling Algorithm using so—alled oreration
refinements

4) The Corpiling Algorithm §s inplerented

Ridirentary annotations to the forrula :

05-10 : If a constraint is given it is coreiled
and storage is claimed and associated to the
symbo]l table handle ta. The evaluated predicates

are fetched and used for generating the optimal
code for the constraint.

12-16 : 1f no initialization expression is given,
storage is allocated and the associated addresses
are stored in the symbol table (via the DESCA-All3s).
1f storage allocation is to be done by pushes, the

stack pointer is incremented resulting in undefined
initialization values.

18-36 : The storage address of the constraint
descriptor is extracted from the syrbol tadle and
the initialization expression is evaluated the
required number of times and checked against the
constraint before assigned.

02 le: mk-SimplcObjcc:Dccl{objkind.objidl,ocmtr,oc:pr} = decl in
03 Tet mk-0bjldl(len,dal) = obidl in -

0¢  Ist %a « 8-TYPE-ADDR(dall1]) in™

05 {oconstr ¢ nil wm>

06 C-Simplelonstr(am, oconstr, ta, objkind,

07 Simplelonstn-StatieBounds (decl),
08 SimpleConstn-NotNullRange(decl),
08 SimplelonstwNoloverCheck (decl),
10 SimpleConstw-NolUpperCheck(decl)))
b} °

12 {oexpr = nil -»

13 { 16t st-addr = get-obj-addriobjkind) in

14 . T insert-obj-addr(dallil,st-addr) |T <1 <lem
25 * =

26 (am = IMMEDIATE em> Alloc on stack(len * sizelodbjkind})),
17 T = -7

18 let ea » ertract-constr-addr(ta) in

19 (Expr-NoSideEffect(decl) -»

20 C-Ezpr(oexpr, objkind)

21 “

22 { Expr-NoSubtypelheck(decl) em>

23 Check_range(objkind, ea))

a4 -

25 C-AssignInitEspriam, len,dal, objkind),

" r -)

a7 ¢ C-Expr(oezpr, odjkind)

28 ®

29 ( Lzpr-NoSubtypeCheck(decl) mm>

30 Cheek _range(objkind, ca))

8 -
32 let st-addr = get-obj-addrlobikind) in
23 T tnserteobj-addr(dalls), eteaddr)
3 °
35 fam « DEPERRED w>
gg “Poplobjxind, st-addr)) | 1 i <lm )

§6 type: AllocNode SimpleObjectDesl wm> Ad-eods

B-192

| A

g “'
):"
-y

¥

I




L
e’y
$

&
[\
S

e
Ly
"
! procedure (_Siepleldjectdec] 43
a®
Sinplalonstr _Ststic®ourcs : boclear s 1ml7_jet_vprec(1); by
Savplelonstr_“otNullRangas : boolerr :x awl? _cet_prao(2): o
L 3avpleConstr_NcloserChech : boolwar := 30l? set_prac(é); A\
§ Sirgleionstr_cLpzerlheck : boclesr 2% aml? 950t _orec(3d). .
Sagr_%oSidetffacts t boclaer = 1#]1? set _grec(it); o
Eagr_toludtypelreck : boclesr := im17 _set_prec(id); i
N oS k3nd  : TBIECT_xi'W t® in)7? _otlking; .
: r.€c? : oby_ceci_ocescr_ret 2 uc_otj_cac)l_descr(stn_geccres(aml? _o02.(1), £ .
' o3 : eo_cescr i® uc_ob _descr(sth_naccest{c_ovc.8lle13028cr, rl)).all; oIS
. ca : CozocCress: ¢l
t:_- i®)7_pes : iwl7_positicn; -
& begin
iml1?_in; _
> 11 1917 _next /= nil then .
. C_.S%irplelonstrier, cc.ot _tyre, ob king, Saeglalonser_Strtictouncs, -
.. : Samglefenstr_ihotNulifenge, Kt
tirglelonstr_‘olLowerCneck, e
- SascleConsir_AcLocer(hneck), “
o end 1if; :

112
Ty

i"17_set_recs(ae)l” _gos)?

irl?_an; = oexzr “
o :
r".- $1 1917 _next = nil then .
- get_ong_1nsert _cbdj_2odrs(odjking).’ KA
: 11 8C_ew = IVPICIATE then -
i e»it_cllar_3lloc_cn_stack, 3w)~_22]1 len ¢ siza_of(ozjking)),
end §f. N
else e
. ca s yc_sivele_type(sth_access(od.ot)_typa, rl)).all.constr_gadr; :
. o
- 1¢ Sapr_NoSiceEffects then .\,-‘
S_Exprlotiking); ~
- 11 not Exgr _NoSudtypelheck then o
. amit_cS(aa_Check_rgnje, ot kinc, ca); o
: ond 11; KR
. S C_AssignTtnitExpr{eb jking)’ v
-~ else - ~
= for 4 &n 1..4¢17_dal_len n‘;
loop -
] 11 1 > 1 then
o irl?_set_peslaml?_pcs); <.
" inl?_4n; S
‘ end 8¢’ T
. "3
o C_Eaprlcbjking)’ K
. $t not Expr_NoSudDtygeCleck then -
- emit_cSlan_Cleck _rarze, cbikind, co)?
ond 4f; .
') l‘.
vy P_0Cd :* uc_otJ _dec)_oescristh_sccess(inl? _cal(i), u))’ $
Yo get_od i _sacrlobdbikine, g _odd.8ll.0b’_asddr); .
. £0 4C_sr = TEFERIEC then :
enit_cS5(as_Pop, cdikind, p_ocd.all.otj_scor); 2%
ond 19
oend loep’ ol
end 4¢; KN
e ond 1. A
;.: ond C_Simglestiectlecl’ f_._
« \
N
n B~103 "
.-.' \-I
e T e e A A A e e e S oy U € g g




"y a8 O

e« aTa LW

4. Experience Gained

Section 4.] presents same quantitative observa-
tions as regards the BLC-Ada sub-project and the
mein Ads compiler project. Bection 4.2 contains
some technica) experience mostly concerning the
devistions fram "strict™ VDM, and section 4.)
contains our experience as seen fromn a software
management point of view.

4.1 Quantitative Observations

SLL-M8 Sub-Project

Companent Fformula Source Hours
lines lines

Scanner and Parser 3200 472

Btatic Semantics amd

Front End 1400 11500 1365

Compiling Algorithm and

Code Generator 1300 6700 1285

Misc. (Library System,

Linker, Run Time System,

Urilities) 8500 368

Anctiown] Test by OA Staff 3400 178

User Documentation 67

Total 2700 33300 3735

These £i s include the design of the Ada subset
and the lcgment of the folowing infarmel
docurents: Design Specification (44 pages), -
Informa) Program Specification (39 peges) and
User’s Guide (68 pages).

The initial estimate vas 1860 person hours. The
mjor reason for the overrun was that the
corplexity of the Ada subset was undersstimated.
Initially it vas considered to be of the
corplexity of Pascel.

Aas Compiler Project
Coponent Formula fource PMours
1lines lines

Static Semantics, Scarmer,
Parser and Front Bd

Oyramic Ssmntics,
Compiling Adgorithms and
Code Generstor

24000 35000 12400

20000 62000 9700

Component formula Source Hours
lines Jines

Separate Compilation

Handler, Multi Pass

Adninistrator, Supporting

Packages 42000 2700

Misc.(SLC-Ada, other

tools) 2700 66000 4220

User Documentation 400

Functional Test by OA

staff «+) 2000 950

Other QA Work 1R50

Overhead +) 1150
46700 230000 4370C

4) This includes: Management, meetings with
partners and other implerentors, conferences,
work in Ada Eurcpe on language review and
standardization, computer operation.

++) As the official Ada Corpiler Validation
Capability test suite was used we had only to
develop & few test programs.

The figures above include the developrent of the
following documents, totalling 1200 pages not

including the formilae: Requirements specification,
“fu:?.ic;nl specification, global design, detailed

o including intermediate } s and )|
table, cnem’l?y available !mm. tenm
reports. Purther s included feasibility studies
of interradiate languages used elsevhere, progress
meetings, review meetings. All figures are
approximate, as the project is not completed at
the time of writing.

The initial estimate was 32,000 perscn hours, and
that around 100,000 lines of code had to be

developed (excluding the S1C-Ada syster). The
reasons for the overnun hasn't been cowpletely
analyzed, but arong the reasons are: The Ada
language changed during the project, the
carplexity wvas higher than estimated, the
development tock place on new hardwvare and on a
pre-relesse of & new Operating system.

4.2 Technical §ence

This ualmMQnuusMwhdw
deviate from “strict” VDM. Nowever, it should be
noted that VDM users are tic rather than
dogratic, so that it is considered perfectly
acoeptable to adapt VIM to specific needs!

~ Transformation of one step into the next wvas
done systematicslly, Bt informally. No proofs
of correctness were given. It is not feasidble

e S T

o

.El

LSarS

.«

-
‘I

-

o

‘e

S i N \' 4 %

e

tyr

oy S
1 l.‘l'

SN

.

-

$4

Yy

1B

‘e

~

K
-



d

WO |

CAAY

to carry out proofs of correctness without
tools which can aid the proofs: even with such
tools the task might turn out to be very large.

The formulae developed in the first two steps
were not maintained up to date with the
changing Ada language. Hence the camplete
line of docurentation from the forma)
description of Ada down to the implemented
capiler is lost. There are two major reasons
for this: (1) the lack of tools makes it
extrerely difficult to maintain forma) specifi-
cations of the size of the Ada project, and
(2) maintenance of the formal specification of
Ada is a major task in itself, taking the many
changes and (still unresolved) semantic
problems in Ada into account. In a compiler
one can take certain decisions as regards the
implementation of the semantics of Ada - this
cannot be done in a formal specification.

Development of a derivation step was based on
the forma) specification of the previous step
and the informal description of the changes
which had occurred to Ada in the meantime.

A macro-expansion step between the campiling
algorithm and the specification of the code
generator was omitted. The macro expansion
would have allowed for experiments with the
storage Jayout at run time and with the run
time administration. However, amission of the
step was (partly) justified with the fact,
that DOC was not directly involved in the
development of the A-machine.

4.3 Software Management Experience

Management of the project benefits, because
each project member knows how the work should
be done.

The project status is more transparent due to
the various intermediate milestones which have
to be formally specified. Progress can be
measured.

The implementation can be divided into levels,
or intermediate milestones, in a secure way
based on the formal specifications. There is no
risk that the resulting lower level subset
campilers cannot be extended tc full Ada, as
has been seen aon other projects.

Based on experience fram SiC-Ada and the formal
specifications of the campiler passes,
reascnably good estimates of the final program
size and resource requirsments can be made.
Howwver, it became evident that the experience
fram the earlier DOC CHILL compiler project
cld not be applied. This indicates that the
actual style and level of the formal specifi-
cations are rather persanal, in that they
depend on the authors. Fence the amount of
work in deriving implementations depends on

the individuals involved.

Mding staff with VDM experience to the proje=
poses no problems. Movina staff fro- one part
of the project to another poses no protle-s.
Such staff changes are feasible in the
specification phase as well as in the
implementation phase.

Adding staff in the implementation phase with
little or no VDM experience {but with an
introductory course to VDM) is not feasible.
In such cases the staff should participate
also in the specification phase, mainly for
the purpose of education and motivation.

Strict {rigorous) use of VDM is not feasible
on a project of this size and nature: partly
due to the size of the specifications and
programs, partly due to the chanqing reguire-
ments (here the changes of Ada). Meragerent
mist be able to deviate fram strict VDM by
giving in on formal derivations, on procfs/
arguments of the correctness of the derivation
steps, and by omitting certain derivation
steps (e.g. macro~expansion specification
between the compiling algorithm and the actual
code generator). The advantage of VDM thus
becomes that of enabling formal and precise
definitions of each step and the associated
interfaces. More rigorous derivations require
software tools (transformation processors,
proof and verification tools).

The development of a formal definition of Ada
as the first step gave a very valuable insight
into Ada, and it made it easy for the persoms
involved to ascertain the consequences of the
various changes of Ada for the campiler.
However, it is not possible to derive in any
formal way the gpecification of a multi-pass
campiler from the Ada specification.

Due to the camplete formal specifications,
reasonably final interface definitions (e.g.
intermediate languages) can be given at a
rather early stage. Hence, new staff metbers
can be added for parallel work without much
introduction.

Focusing entirely on the Ada language semantics
in the early phase hampered camunication with
other implementors who were more concerned
with implementation details of various specific
constructs. These implementors had still to
discover and understand the more fundamental
issuves and problems.

Development including management of formal
specifications of a size carparadble to that of
the formal definition of Ada is hardly possible
without the support of software tools (cross
checking formulae, cross-referencing).

Quite a large nuvber of trivial errors in the
specifications were not found until they were




\-‘. - .v_ v.-l;‘zv:&v L ‘I""Y".. "77..f'_ < _‘r-_ 1:_17'. L A i gk e ". o - ol i i
3 Y
., : ,
t:.. K5
detected in the corresponding code. Such 5. Conclusion .
errors could be detected in an earlier staaze -_— i
by proper VDM-tools. Our overall conclusion is that the project couls MO
not have been carried out to the achieved leve) Oy
= Maintenance of Jarae formal specifications is of quality within the time frame availahle without -
not feasible without tools, unless the original the use of VDM. Camarisons with other methods o
developers are available for the maintenance. cannot presently be made due to lack of daza fror ; K
similar large-scale projects carried out with >
~ The lack of VDM tools makes production and similar formal methods. However, most, if not
maintenance of the documentation very all, other formally based methods are too riozrous bes "’
expensive. The SLC-Ada documentation has been to allow for practical use - hence (part of) the e
maintained only by marking the changes in pencil advantages we have qained fror VDM cannot ' :
in the original documents. However, this necessarily be proiected onto other methods as
approach is not satisfactory if the documents these will not be able to handle projects of the .
have to be used by persons other than the size and cotlexity of the DIX Ada project. A L
authors. discussion of various methods based on experience e
from smaller projects is available in [5]), whereas
- 1In the SIC-Ada case the static serantics VDt has been qiven a critical review in [12]. . e
specification proved a useful reference ol
document, which was frequently used to settle ~ s
quickly any debate about the contents and Y
meaning of the subset. §. References ) T
. . 1] H. Bekié¢, D. Bjémer, W. Henhapl, C.B. N Y
- 12 mostly minor errors were found in the SLC- () Jones and P. Lu)gas: A Forn:? foin:’t-.'on of »
Ada during the functional test carried out by ¢ ; - ~
the DDC Quality Assurance ger. N of algl;i./.x Subset, 1BM Vienna, TR25.139, Dec. __..
the errors required changes in the initial PR
design or implementation strategy. The pro- [2) D. Bidrner, O.N. Oest (eds.): Towards a » PR
gram under test consisted of 30.000 lines. po,-m)id Description of Ada, Lecture Notes »* o
18.000 of these were developed by use of VDM. in Camputer science, Vol. 98, Springer :..
Verlag, 1980. . PR,
- The nurber of errors found after deli\éegy of .
the SIC-Ada was very low. less than O. [3) D. Bjgrne Crr e ]
ieied . . r, C.B. Jones: Formal Specificaziom -
pe:gem of the ’m"‘:!lﬂde::]q’f‘ent ";."':h‘:‘s and Software Development, Prentice-Hall Y,
used on meintenance extensions o Intermational) Series in Camputer Science, -~
subset . 1982. OIS
l.- \
= The Quality Assurance function could be [4] A. Church: The Caleuli of Lambda~Conversiom N
applied at an early point in time: The formal Mnals of Math. Studies, 6, Princeton ’ ~
specifications was scrutinized on a sample University Press, N.J., 1941. L]
basis by the Quality Assurance staff, who S, &
mainly focused on critical areas as the symbol {51 B. oon cai . .o
g . en, M.1. Jackson: A Critieal Apprcisal g
;"b]' building and application, and on the of Pormal Softucre Development Theories, o
nterfaces. Methode and Tools, ESPRIT preparatory study, e
1% . .
- The Quality Assurance staff must incorporate STL, June 1983. N ;'_'
oneiills (at least) of the level of the [6] L. Ibsen, L.0.K. Nielsen, N.M. Jgrgensen: '
Opment ‘ A-Machine Specification, ADA/RFM/0001, )
+ . . . 98 . ._.- \-
- e tine schedule laig down in the criginal Gwistian Rovsing A/S, March 1983
work plan of 1980 has been followed by . R O
lar l-’lr.wr:nz‘di to this schedule the iler [7) V. Donzeau-Gouge, G. Kahn, B. lang, B. Krieg- y
ge: acc ng compl Brueckner: On the Pormal Definition of B |
and run time systen should be operational in Ada, Rivista Di Informatica, Vol. X, N.1 PO
. Septenber 1983. The date achieved was May 1983 Jan‘u o 1980 ' ¢ T Tt PO
for the leve] 1 subset, August 1983 for level ary-tar . -
2, and February 1984 for full Ada. [8) G.B. Clemensen, H.H. Lévengreen: Portable ,,.
Ada Programming System, Dynamic Semantics, N
= The ressources estimated in the criginal work e P . W
plan in 1980 were insufficient; the overrun Description of Ada Tasking, DXC, Nov. 1981. = t ‘
amounted to 37 per cent. Hence we could only . e
keep the time schedule by adding staff to the (9] . Jeraensen; Portable 4da Programming, Y
»
project. VIM here helped to make this fairly Transformation, TODC, Feb. 1982. .
easy as discussed ahove. ! .
.fl
ooy
_.-: :.-
v
B-1N6 N
o :‘:
. Y
A L T LA e -




&\
A

I
b\ A
- !\ L) Y
.P:: Y
"\ A :n
[10} H. Bruun, J. Bundgaard, J. Jgraensen: . .\-
Portable Ada Frcgramming Sycter, Acda Statie -
! Semantics, Well-formedness Criteria, DOC, e
W March 1982. q
[11] J.5. Pedersen, P. Folkjaer, 1.4. Hansen: :‘. v
n Portable Ada Programming System, Dynamie y
Semantics, Description of Scquential Ada,

R

poC, March 1982.

)

o [12) S. Prehn, 1.¢. Hansen, S.U. Palm, P. Ggbel: 3
" Formzl Mecthods Appraigal, Part II, A -

Critical Ezamination of VD¥, DDC, June 1983. t':'-

w [13) DJANA Reference Manual, Revision 3, TAFRTAN }
t.; lavoratories INC, Febr. 1983. -
[14) Reference Marual for the Ada Programming -

Lar.guage, ANS1/MIL-STD 1B1SA, January 1983.
- [15) J.E. Stoy: Denotatiomal Semantics: The :
v Seott-Strachey Approach to Programming AN

. larsuzge Tneory, MIT Press, 1977. )

€

..
. »
'y 3 % e Cry

{0
1k

I* ‘!
e
. .-:“Q
(o o
t‘ =
e
- .-
Y
.
l.'..'
> - ..'
o, .
2
0 'l
. S
A i
<. A
LI L
Ve
X -.:.-.
I W
-
~=
g
N,
- L] .\ -
<
-.

B
.

e Te '
.« > 50

B-1n7

!




-

f.}l ~A.

>
[N R

f‘»'

Oy

The Draft Formal Definition of Ada®

Commission of the European Communities: Multi-Annual Programme

The ROle and Scope of the Formal Definition of Ada

Dines Bjgrner

September 9, 1985

‘Ada 15 a registered trademark of the U S Govermnment (Ada Joint Program Otfice)

3-1n9

.t"'..“i
3 -

R IR I
LA A
'l"'ll'l

s,
':.l‘
B

AR T

oy




W m 'l.t""

-y

AT

-

The

Dratt

Formal

Definition

of Ada - 2 -

(1)

(2)

(3)

(4)

(S)

(6)

(7)

(8)

A alitofa st Ratall Ratniat ek Saihlad et il

PREVIOUS PAGE
1S BLANK

[

DOCUMENT HISTORY

Version 0 of this document was very preliminary. It has not
been internally reviewed among the Ada FD project partici-
pants.

Version O was being externally distributed on a courtesy ba-
sis. It was not to be further distributed outside the pro-
ject partners. Receivers were kindly asked to submit com-
ments before 15 August 1985.

Version 0 was subject to a write-in internal review.
This internal review started 23 July and ended 15 August
1985.

Version 1 resulted from this write-in review. It is now
subject to a pre-external review: 23 August - 1 Sept 1985.

There will be. no external review of this deliverable.

Version 2 should result from this formal internal review.
It will then be submitted to the CEC, 9 Sept 1985.

The CEC will review this version 2 on 1 Oct 1985.

Further versions are expected to be produced throughout
the project life.

PROJECT SPONSOR

This report represents work which is fully funded by the CET
(Commission of the European Communities) under the Multi-Annual
Programme in the Field of Data Processing, Project No. 782: "The
Draft Formal Definition of ANSI/MIL-STD 1815A Ada".

o
Ol

r«v
l".‘
o

» I s

£, €. 00,
NN,
LN

.l
.

* .

L

.'-"'-.‘ Lo
AP

PR
.."




Al Sadb Aol fol tal Al Aull It Al Ml Ale Abe o Ste his 4

l"

Formai
Definition
of Ada

,‘i

P
l’_'..-‘

[
S

-J

-

*,

-
.
v
\
[
"
-."
o o
. ~w
i
.
-
» N
. .'r"
. T
.
3 -
+
] "
o
"
-,
‘s
g N

L

Py



"B &L

s

F..f

LA |

Pl

b N

Ol
tate

3

v
iy
a®a

v
*

-

| BN

=~

Ak

A s - ik 43 <« - 4 K AN MWW W, -y LA

The

Oratt

Formai

Oeftinition

of Ada - 3 -
ABSTRACT

This document defines:

(a) Relevant Ada programming language issues,
(b) what is meant by a formal definition (FD),
{c) the various user groups of an Ada FD, and
(@) the uses these groups may have of such an FD.

From the extensional requirements (sects.2-3) that these users
expect an Ada FD to fulfil, and from the state-of-the-art of
formal definition techniques and methods (sect.4), we then de-
rive the basic intended characteristics of the particular Ada
FD to be constructed in this project, first ideally (sect.5),
then realistically (sect.6).

This document is to serve as part of the final, full documenta-
tion constituting the Ada FD.

The rdle of this document is twofold:

(I) To serve as a “"yardstick"” with which to “measure” the
conformance of the intermediate and final results of
on-going Ada FD project work w.r.t. the perceived
rdle of the Ada FD, and

(I11) as one of several kinds of introductions to the Ada FD
project.

The present, initial, version will differ slightly from a final
version in that it addresses mainly document rdle (I), whereas
the final version should address rdle (II).

- . Y
'.'-' ]

L)
-
.
-
-
L.
[
-
-

% 4

T

5 1

\‘..

5

>
o\
b

R

»

r.‘s

i
A

r;: T"J'i'.-
o,

v,

Pl X PLAD
ol LY
Srza

L4
)




2y

> >

aveia s AN

R o« o cra AT,

[ PN

Forary.

M

he
Orart

Formai
Defirvition
of Ada

B-114

W ot e ™ T e e e T N M e e U T T, A e, S e e
e N e T A A L T AT T T e T
ﬁ.ﬂsfxﬁf&fgﬂuxkﬁthHJ.fk‘.m‘iL{ IR AR AT REAT S TP A SNy

2 Wi

¥ ™
iy

.

<l

O

)

[N

»




HOW TO READ THIS DOCUMENT.

Sections 5 and 6 contain the core of this report.




.-
DY)
[

DR AN A

Ty

[ o™ )

AL

« v -4-
s o,

v e v v,
.
Ly R

)Jl.‘wvnuuu-

Ffe s o0

-o-\-:-.-'.-‘-- &

N T T

18 A5 w2

2-116




LR

KN

| 7]

“he
Orart

fFormai

Defimtion

of Ada - 5 =
CONTENTS

Part I: Preliminaries

0. Project Overview
0.1 Background
0.2 Purpose
0.3 Project Partrners

l. Report Structure

O

Part 1II: On Programmin Languages

2. Language Issues

2.0 Language Design

2.1 Language Properties

2.2 Language Implementation
2.2.1 Interpreters
2.2.2 Compilers
2.2.3 Support Tools

2.3 Language Use
2.3.1 Programming
2.3.2 Documentation

2.4 Standardization

2.5 Teaching

2.6 Research

2.7 Conclusion

3. Users and Uses of an Ada FD

3.1 Language Designers

3.2 Implementors

3.3 Programmers

3.4 Standardization

3.5 Teachers, Instructors, and Programming
Consultants

3.6 Scientists

3.7 Validators

B-117

Page

10
10

13

15
16
16
17
18
18
18
19
20
20
20
20
2l
21

23
24
24
25
26
27

27
29

e
8

’

1 -
'.’\'.a_'

-

A

»

OO

%7

s e 8 e o -
o .‘..' oy

-0y




7.

A,

The
Oraft
Formai

Defintion
of Ada - § =

lLanguage Specification

4.0

4.3

Language Description Categories

4.0.1 Reference Manual and Rationale

4.0.2 Implementors Guide

4.0.3 Compiler as Language Describer

4.0.4 PFormal Definition

What is meant by °‘Formal’

Formalization Techniques

4.2.0 Deductive- and Model-oriented
Specifications

4.2.1 Axiomatic Semantics

4.2.2 Algebraic Semantics

4.2.3 Denotational Semantics

4.2.4 Structural Operational Semantics

4.2.5 Other Specification Techniques

The Ada FD Approach

Part 11l: Specification Requirements

5.

Requirements to the Ada FD

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Legal Contract

Consistent and Complete
Comprehensive and Concise
Correct and Believed Correct
Accessible and Referenceable
Permissive

Implementation Independent
Basis for Processor Development
Basis for Validation

Basis for Proof Systems
Mechanizable

Basis for Prototyping
Correlatable

Basis for Document Derivation
Maintainable

Assumptions

Derived Requirements

Page

3l
31
31
32
33
33
34
34
34

36
37
38
39
39
40

45
47
48
48
48
49
49
49
50
50
Sl
52
$2
52
53
53
53

54

.
" ‘l_!

[ A

Lty
.

.

g

R
" *




+ - S it Lt AN LesLe buind - v N e Al ad el sat . U ey
T A IR » N
The W \-
o R
1]
N Definition ~
of Ada - 7 -

F: Part IV: Summary Page -

! 6. The Rdle and Scope of the Ada FD 55

7. Conclusion 59 s

. -
8. References 61 o]

o e
Appendix A: Mnemonics A-1 N
f.:" R

e ppendix B: Terminology B-1 »

»

o R

o KON

" -:‘.J'
S
\_&ﬂ ]

e N

N o

O ]
B

.

,
d
L I
e

“
RS
. e
- . ’l ‘-
":' Y

‘w

'."‘r-"'l‘
',‘/.'-‘:‘

-
b
8 ' e

ity 3, pet

a
.
s

s

L]
~
ay
l_:. .‘_ L]
L ‘.
o b
. v
PR
LS
. .." V.
"¢ Reng
.- -
)
e S R
b e
t. tu
’ .-‘ ‘.
- KN4
3119 2™ Y

. -

A AL AL AT

“u *,



g v CRRRR S A et ot Ty e e e L A AN R s ol - S e - - Pl

N Orant &4

eyl -8 - 8

Bl

N

-
-
(e sundil]
e .
£

FEm

s
I"
.
K]
.
*
- .-
g -
- ﬁ
By ‘l
. .
V. .
< .
b -

-..
...
l-‘ ‘-.
- .
~.-- -
..- -
e
!
K- -
&3
..
b e
L '~
~ '~
! iy .
- A
~ o
- .
.- . .
-
.
.
Y
- .

r'/‘l N

Ay]
- i
—

O
',"l

. v

|
o

N
N o
S a
-
.Q
3-121 ||
o

LY .

Lo TP ‘.r_‘.'.'-.-' ’.-\‘..*_:.-_;.'_‘:',;-"

-t e m -
-

RN AL RGN DR O ST R (L o T R L L LT A
B D 0 S O S Oy AU L NS GH G CRA RS |



=
»
-
-
?
J
(]
>

- 3 W 4 Ja ot " g . -
- - - NTERT ! ! i

. The ’ s
Dvan“ - 9 - }j::
Defirvition N
of Ada

s 0. PROJECT OVERVIEW N
": 'I:."
hyS

We briefly give a set of contextual facts concerning "The CEC o

.4‘

MAP Project: The Draft Formal Definition of ANSI/MIL-STD 1815A
Ada" henceforth referred to as the Ada FD project. For under- ::
standing the unpleasantly heavy use of mnemonics, please re- :“'
fer to Appendix A.

e

i
!: 0.1 Background .:::
a o
R
" The Ada programming language is described informally in the ;’.:
P so-called Language Reference Manual, LRM, also known as the :
. ANSI/MIL-STD 1815A standard. rY
Many Ada compilers (several academic and several industrial) ,Z:_:j'.
;:,". have been, or are being develcped, in USA and Europe (West and ::i:'
k& East) - world-wide. Many, including some commercial compilers,
. are labelled Ada, but compile subsets of, or extensions to Ada. tr':
" Ada appears to be destined for extensive use in educational, com- %::
T mercial, industrial, and military contexts. NN

-,
’

s

-
5| V-

There is an obvious need for an Ada standard with no deviations:

DS
-’_

. subsets, extensions, errors, or mis-interpretations. ey
2 o
) The US DoD was, from the very beginning, clearly aware of this. -\_
8 And the CEC quickly established industrial projects not only
aimed at producing European Ada compiler products and competen- -
ce, but also, on a brd&dcr scale, at acquiring deep and wide- ;;’,'-:
E’,".; spread insight into all aspects of Ada. Thus, the CEC, in ._
1980, established a number of very active so-~called "Ada Europe"
\ working groups. :
o The present project must be seen as an outgrowth from se- :
:.2 veral years of often deeply technical and theoretical discus- -
sions, especially in the Ada-Europe Working Group on Formal ~3
:?\'f Semantics, and the working group on Formal Methods. {'.;
N X
23

=
L'.5-
o

Dy

R
y ,”

| ." v
s

.-".\'..._-.‘4:. . /...-. AR RS ARS,



A
Whiteh S

R ]
|‘."- )

.
B

e " s JI_.I:L

P et A
AN
LA

N

P

Formai
Crier
9 - 10 -

0.2 Purpose

The purpocse of the Ada FD project is to produce, during 1985-
1986, a draft formal definition of the language as defined by
the language Reference Manual ANSI/MIL-STD 1815A Ada.

We list the major deliverables:

I: A Formal Definition, referred to as the Ada FD, of ANSI/
MIL-STD 1815A Ada.

II: A precise definition, referred to as the Ada FD MTL, of
the definition Methods, Techniques, and Languages (no-
tations) used in producing the Ada FD.

I1I: A detailed, comprehensive cross-reference, referred to

as Ada FD/LRM, between the Ada FD and the ANSI/MIL-STD
1815A LRM.

Iv:. An Ada FD Primer introducing the Ada FD, in careful over-
views and details, independent of the LRM.

Ve Computerized, reasonably portable tools for reading and
manipulating (i) the Ada FD, (ii) the Ada FD MTL, (iii)
the LRM and the Ada FD/LRM, and (iv) the Ada FD Primer,
i.e. all essential documents produced by this project.

0.3 Project Partners

The Ada FD project is carried out under an almost fully paid
contract to the CEC jointly by Dansk Datamatik Center (DDC)
(Denmark) and CRAI (Consorzio per la Ricerca e le Applicazioni
de Informatica) (Italy). DDC is the main contractor.

In this Project DDC makes use of consultants (Prof. Hans

Bruun and Hans Henrik Lg¢vengreen) from the Department of Com-
puter Science at the Technical University of Denmark.

% et m et
N
W P e T, W

W YN




. Oraft- - 11 - _‘-
Oefinition
% of Aca
Y
) CRAI has sub-contracted certain parts of these project parts to :f:::.-
e the CNR-IEI in Pisa (Istituto di Elaborazione della Informazione '1
of the Italian Consiglio Nazionale delle Ricerche), and other-
' wise makes use of consultants from the Universities of Pisa and .
o Genoa (Prof. Ugo Montanari, Inst. of Informatics, Pisa, and Prof. ::}_:.
B Egidio Astesiano, Math. Inst., Genoa). o
L] et o
¢ S ;
DDC has more than 5 years of experience in formal definitions i
\F (mainly the CHILL and Ada programming languages), in extensive fj{:
" Ada programming (more than 1/3 million lines of Ada), and in 1{:.'_‘;:
. systematical development, from formal definitions, of production {'.:-:
e quality compilers for CHILL and Ada. £
1'_"‘
r T
v CRAI, with its sub-contractor and consultants, has played a ma-
jor rdle in the Italian Consiglio Nationale delle Ricerche pro- -::_{
o ject Cnet: a formal programming methodology and software engi- -;:j-
£ neering project for distributed programming and computing (Campus _
. net). ’
N
»
X
]
-‘q"i
< 5&
* \*\.
v ...f"
7
»'.' .:-::
Ta, l.':-.
.‘.- _‘:\
he @'o
’ \_s‘.\
& =
L
. R
N N
o J
‘I

L 2
Ly g
3 ;b

Pl

1,
P
L4

‘e W
g

B-123

EREE -
'

'

LR M S N I T T S T i 4ttt -"l_-"_ R
et :.‘_ '-J,‘..,‘-, O S -r.'f.""-'\l‘*-'.r' . .



J!- ..!--\--7. !;-.-.. .-...... ..J , ... ..~ ,.. .-!i& - v-.,.-..*. N -‘. -.-....%M!. . h... . ...)

B-124

.3

et e

“

.

- e P - e .. TR R L o e e L e TS vy -
Ao | WHKNINEE OGRS IR | WA % {2 CONBERY VIV AP AR NARNNAY N



5

X

T T
vt

AN

~

L

s
e

€

“»

Ve
R

<2 s
L

I(.-_.
D e

The

Drart

Formai - 13 -
Definition

of Ada

1. REPORT STRUCTURE

The purpose of this report is twofold: first to identify and
review:

(1) language issues to be defined (Sect.2),
{ii) wusers and uses of a language specification (Sect.3), and
(iii) language specification techniques (Sect.4), and then

(iv) to identify (Sect.5) and review (Sect.6) the require-
ments which the above three aspects imply of the Ada
FD gpecification.

Given the (current) state-of-the-art in formal language defini-
tion techniques, section 6 is a preview of the extent to which
we, today, believe that the Ada FD will fulfil these require-
ments.

A final version of this report, to be edited when the project
is (almost) completed, will attempt to assess whether these
requirements have then been met.

S0: we see the three subject categories (i-ii-iii): language is-

sues, user groups/expectations and specification techniques as
almost orthogonally (independently) setting the scene for our
endeavour. Exactly hchWe see these subjects determining our
task is then detailed in section 5 (iv).

The reader is therefore asked to regard sections 2-4 as inde-
pendent approcaches to the problem at hand: the construction of
an acceptable definition of Ada.

The reason for 1listing so many language issues, uses, and
users is the following: we wish the resulting specification to
address as many of these as are relevant. Or, putting it in the
opposite: not doing a proper analysis (viz. realizing which
could be the potential language issues, uses and users) would
most probably hamper our specification work. We are trying to
avoid making a specification for its own sake.

b=125

et P aiia® Jiaudinn e fal Sab Sab St olin® i dine ot afies

-

[T

1%

Y YLs
L

£ f'f"' ..F‘ -
NAARAA] | #25

y

.
2

% |

o g

e,
B
PRI A 4

T
.

.

’
I}

3 1 0

"l"l I. , l‘ )
."

2 |
. I‘

e

»
2

AP
. et
oL,

B

.t"‘o'u N t

&SNS

‘l
~



“
.

i The
Dratt . - 14 -
Defimtion
of Ada

We want a specification which is of relevance, which is im-
portant, and which, hopefully, is to be influential. The areas it
could influence are those of the language issues, and the lan-
guage uses and users.

3-12¢6

A L S . Cad . T At e el
PRTSEIAS ST al .

. - E R R . P ST T e e s
e T T G e e A T T P L ST TP o S Y
PRIV E PO T P VP P8 T P (R P Y W PR VR PTIPE P 78 S V0 S DU DY

.
l.‘

-

e i

.

RN

v
-

Y




o . . o e " vy v
A DA A i) i R IS £ ATFETS - Woe . W W W, W T V.8 N

Dratt - 15 -

e v e
\'_a."-.

. Formal -
] Defindtion
E of Ada b
- 2. LANGUAGE ISSUES ,;»_:’:
P e
4 s
A language specification should take a clear stand on which "'_",‘
' language issues to cater for, and which to dispense with. ’
-
" Therefore, we list a number of language issues. ‘-”;
. o
3 In sections 5 and 6 we shall then conclude which of these .:
issues will be in the domain (ie. within the scope) of the sl
" specificatjion. :\} /
wd RIRY
B
o A number of language issues, other than specification, can be :
&‘F identified. The meaning of the concept "language issue" should B
transpire from the below analysis. There is no guarantee, nei- s
o ther that this is a complete list, nor that it is a list of in- ;":::
o dependent (orthogonal) issues. Since the subject of "language :-:'-:-
issues” itself is not exclusively a formal one, but also re- ::‘::'_:
L '-".-
LS lates to pragmatic issues (such as the interests of individuals, =
groups, and institutions), and derives from their expectations,
“ the treatment necessarily has to be informal. Yet, we shall try ::j.j:
S to be systematic. :

L3
by

We see the language issues to deal with:

PN
. .' ‘. " .’i‘

. (0) Language Design

Ce Wt Ty T

- (1) Language Properties S

-= Determinism, non-determinism, concurrency. incorrect- __“'

! ness, erronecusness, undefinedness, implementation

. dependency, etc. .-:;f.':

5 (2) Language Use -:.._.-

g5 -~ Use in the programming situation, by the ordinary o
programmer, for the development of worthwhile pro-

4 grans

-- Use for program documentation ' j::lj-"

;:i (3) Language Implementation ;:_':,‘-‘

== Development of interpreters

- -- Development of compilers s

:_::- -- Development of support tools: documentation aids, f"‘;_

proof systems, etc. ::"‘

e (4) sStandardization AN

R

e

£ e

& RO

R

! ' . B-127 -
4 P .\..

RS AR SN AR S




Sa84%N

o T

-~

By
e T

s l’j.‘.)-’} ;

XA AN

. LR
SN S

<Illllll

LR

Dran

Jra

Formai - 16 -
Definition
of Aca

(S) Education: teaching and training, textbooks and reference
manuals

(6) Research

2.0 Language Design

The language has been, or has to be, designed.

In designing a programming language, the designer usually has
two other concerns: programming techniques (methodology), and
compiler (interpreter) implementation. The designer should,
however, have a third concern: ease, or elegance, of explaining
tpe semantics. Formal specification may offer a tool to be used
aétively by language designers.

One last concern could be: to what extent, in what sense, and

how (if relevant) a language design permits language subsets or
extensions.

(The current version of Ada is constantly undergoing re-design.
It is not planned that the Ada FD project should offer explicit
liason to the on-going ISO Ada LMC (Language Maintenance Commit-
tee). We shall, however, inform the ISO Ada LMC about problems
arising from potentially questionable language design. But that
is not an active design issue, such as "what effects do I get,
if I design a construct such-and-such?". Our input to the 180
Ada LMC is more of the passive character: “since you have now
designed this/that construct such-and-such, let us inform you
of the following problems: ...".)

2.1 Language Properties

The language has properties.

The issue here {in the context of given, accepted, and reliable
language designs) is: Independently of the detailed specific
semantics, how can we characterize and classify language features

. 1

;‘D‘;’

Fong

y




Oratt
a
- Formal - -
Defirtion 17
of Ada

. 80 that a design (and its specification) most "directly" and
) faithfully, abstractly defines these features.

! The kinds of language construct properties we have in mind are:
E& (i) deterministic features, like statement seguencing
i and specific order of elaboration (e.g. left-to-
Loy right)
, (ii) non-deterministic features, like arbitrary
:'-"'.‘ order of evaluation (e.g. subprogram parameters)
&
o (iii) concurrency (parallelism), like tasking ;j::_'.';
. (iv) incorrectness: certain syntactically correct composed .\.:;:j.
‘é features not being defined semantically oy
o (v) erronecusness E:j:'_'-‘
i e
i (vi) undefinedness o
' (vii) implementation/target machine dependent features -'-::A-:
¢ b
v The problem at hand is: for each construct, or combination of 3'.'-;-}
constructs to classify it according to the above categorization, d_
!, and then, if feasible, to find and apply a most fitting defini- :\::
' tion technique. \‘,
<
S et
'-:
2.2 Language Implementation AN
o ;‘.'\"'.
MRS
N,
o The language has to be implemented. Hence, implementability is Y
- a language issue.
IS
;: Language processors are either: ‘_l:.:::
- interpreters, o
fﬁ} - compilers, or ' . Lo

- support tools N\




ST e T gy R T

W
e *he
- S - 18 - =
Oefinition .
ot
- e
C 2.2.1 Interpreters ‘.
>
o
2 It is, for example, a language issue to which extent various ii
~ bindings of a program (e.g. of its names to their meaning) can v
¢ only be done at run-time. That is: how dynamic are these bindings -
Z‘.. in the sense of names being bound (in different runs of the -\,',j
» program) to different kinds (or types) of objects. The more so,
% the more programs have to be interpreted. s;
o 2.2.2 Compilers o
S At the opposite end of the binding spectrum from all being ful- . o
‘if ly interpreted, we have fully static bindings, i.e. bindings b
?: the validity of which can be checked before run-time, i.e. at =
‘ so-called compile~time. The more so, the more programs can be .
I~ compiled!
: 3
N -
x:.
> pi o
S0 the position in the spectrum from campilability to intrinsic
'E: forced interpretability is a language issue. It is a relevant
,f question whether a language definition reflects this position ;:
8 RS
» in the spectrum. -
-
. 2.2.3 Support Tools
{ A number of different kinds of support tools can be identified. -
< &
z Programming-in-the-Small Tools
f Program Re-use Tools "
- Programming-in-the-Large Tools
% Program Verification: Theorem Prover and Checker Tools ;j
Separate Compilation Supports -
Program Linking and Loading Tools -~
P Pl
ﬁf Program Testing and Validation Tools f;:
L Program Debuggers
U o,
. Program Execution (Run-Time) Supports ii
v Program Maintenance and Version Control Tools ‘
(o .
~ N
s "
N
L

---------------------------

SN

L U O R O AR




T O WX

KL P

[ |

The extent to which a language lends itself, through distinct
or similar facets, to each of these tooling and support possibili-
ties (whether desirable, or relevant) is a language issue.

«3 Language Use

The language is to be used.

The issue here (independently of a formal language specifica-

tion) is: the use of the language in the programming and in the
program documentation situations.

An additional language question may be: which are the various

uses (the categories of applications) into which the language
will come?

We attempt, without here expecting to be exhaustive, to list
some uses:

Computation-Intensive: Numerics (Number “Crunching”)
Symbolics (Algebraic Computa-
tions)
Process-Intensive: Control (Embedded systems)

Communication (Networks)

Data-Intensive: Databases (Input Systems,...)

(Information Systems)

Deduction/Inference-

Intensive: Al (Knowledge Based Expert
Systems)

a LN A
Sy e

B« e, te”
R
J.l,‘.'-'.-'i

VY LA ‘,"
o Y ltin g
€O Tl

r
y

.
~

St
.’n"n"gt,

.
)

:




P e

"he

Oraft

Formai - 20 -
Oefirition

ot Ada

These various uses are made by users, and these users expect to
find (in a language definition) answers to questions related to
each of the above-listed areas.

2.3.1 Programming and Program Proofs

Program; have to be developed, and some of them proven correct.

Therefore, the issue is : in which ways does the programming
language lend itself to, for example, stepwise, modularized

(etc.) approaches to development, and to reasoning about worth-
while programs.

2.3.2 Program Documentation

Programs have to be documented.

The issue therefore is: through which mechanisms does the lan-
guage lend itself to program-documentation.

2.4 Standardization

A language can be standardized.

The ease or difficulty with which (1) a language can be standard-

ized, (2) a standard can be adhered to, and (3) a standard can

be maintained is a language issue.

2.5 Teaching

A language has to be taught, i.e. it has to be understood.

The ease or difficulty with which a language can be taught and
understood, and textbocks and reference manuals written, is a
language issue.




A | s () [ AR RN t 120 R ? t §o0 R’ 0y \ 3 5a* dat ia’ AR’ Pata V2" & X XTI W, ™ TOOTORE

.\-
\ The - - A
, Oratt 21 AT,
) . Formai Y.
Definition
of Ada '

ot

!}'

ﬁ‘ 2.6 Research w’a
NG

~ Z:f:'
A language is a live or a dead object. “

. o
’ The excitement (disappointment) generated by a good (bad) lan- &"

° s

e guage design is reflected back into the scientific community. ‘

3 The foundational and methodological research into a language is g

a language issue - even when this research is done for pragmatic, )

f’-',' opportunistic reasons. “
& .'{:
< Kt
‘.J .
2:-._; 2.7 Conclusion A
We have listed some language issues. We have tried not to com- :',:j.

mit ourselves, or the parties involved in these issues, yet to ::'::

any stand on these issues vis-a-vis a formal definition, and ;::

which of these issues an Ada FD reflects! The next section will _

take a first view of this latter concern. >4

AR

',:::

2

...r

R

e

>3

o

2

N

S

2N

LD

e

-.\

o~

F—

e Ve e e -‘,'; " ata,l A te < "t s -_..._ -‘_- -“.."— '4"' I R} et .‘ - -..\
A Ny g A R N T g A I N I S A




he
Oratt
Formai
Definrtion
of Ada

!
N
N

]

_\.-.\&\\\.

’

P

ARSI |




¢

)

|

-
.
..

hesdn
Aty

3. USERS AND USES OF AN Ada FD

Various authors have listed categories of users.

In [2] we find:

Users, implementors, and textbook writers.

In [4] we find:

Users, educators, manufacturers, compiler writers, and
theorists.

In [5]) we find:
Designers, implementors, and programmers.
In [6], we find the best list so far, including:

Novice/practising/sophisticated progammers, local experts,
educators, implementors, validators, designers and language

reviewers, standards people, programming methodologists,
and formalists.

These lists of users imply similar lists of uses. Below, we
have basically followed the proposal of [6].

Let us assume that a perfect, all-encompassing formal definition
of Ada, with all the desirable properties (whatever they are),
could be produced! By whom and to what would or could such a
definition potentially come into use? This section tries, on
the background of the tentative enumeration of section 2, to
list such potential.

Some [4] say that "a language definition should be the ultimate
authority on a language”, and "it must contain answers to all
questions about the language”. [4] does not outline the nature
of these questions. Our section 3 is an attempt to do so.

R S LI SR T S Y S
"‘.- -Q.‘. S “m

R L B L T e
A "(..’-\q' SR TR ._..‘.\-\..\.. S AN e A R R R Sl

CON T ]
A
-

0y

vy e
R e i

X

of

\:(',

oo
AL

[
‘:._ ll
)




P AL G

)‘,'. Sttty e e

IS

v

E A0 P A

L

]

T

PP LrLES

AN

- 8 A

3
v \1".,'$,--‘0.',- i .'.-‘{':ai'é:;;_ e N

o

3.1 Language Designers [5]

Usually, language designers are experts in program coding (i.e.
program implementation), and in language implementation (typi-
cally "compiler writing"). Language designers do not, with rare
exceptions [27], master natural (national, e.g. English) lan-
guage stylistically well. At least not to the degree that is
really needed for writing a precise reference manual. Despite
this, language designers are most often the only, or at least
the first, to write such an informal document. Language
designers are to a scmewhat larger degree capable of reading
the now classical formal definition styles ([37]).

Despite the above, a rdle of a formal definition is to advice
the designer of all language trouble spots, i.e. ambiguities,
undefinednesses, inconsistencies, and incompletenesses.

Another rdle of a formal definition derives from the process of
attempting to formally define a language. The ease (or difficul-
ty) with which this definition process proceeds could be an
indication of scme "measure” of naturalness (“artificiality")
of the proposed language construct. [This last postulate is not
objective in cases where the chosen definition method (tech-
nique and semantic language) is ill-suited for its purpose,
anyway].

Section 5 will state the current Ada FD position on the above
points.

In summary, we conclude that ([6]) "language designers (and
distinguished reviewers) should be primary users of an Ada FD
- also in their rdle of advising standardizing committees
about language changes™.

3.2 Implementors [5]

In [5], three kinds of expectations that implementors might have
of an Ada FD are identified:

@r:

et

“u

PAAA

fi
-7

.
(4
v

| RN




bas

‘.
.
P

\."-_"’-’ \ ﬁ_’é“‘

V-

(1) "advice concerning the meaning of some language feature”,
incl. "what it is supposed to do",

(2) "advice concerning implementation", and

(3) advice concerning "actual certification of compilers,
or possibly compiler components".

[In [5] the above (1-2-3) are stated w.r.t the functions of
a validation centre - rather than, as here, w.r.t an Ada FD.]

Certainly an Ada FD should resolve (1).

Insofar as an Ada FD is constructively defined, e.g. in a model-
oriented denotational or coperational semantics formalism, such
an Ada FD could also give some kind of advice concerning pt.

(2).

And insofar as an Ada FD can serve as a reference point w.r.t.
validations, it can also (circularly) satisfy point (3).

Ways of serving as a reference point for certification (valida-
tion, etc.) are: (1) implementations could be proven correct
w.r.t an Ada FD, and (Il) implementations could be subject to
testing by means of a get of correct and incorrect programs
automatically generated from an Ada FD. :

Section 5 will state the current Ada FD project position on the
above points. B

In summary, we conclude that ([6]) “"implementors of compilers,

interpreters, and support tools (interfacing to the syntax and
semantics of Ada) need the Ada FD to decide on language issues”.

3.3 Programmers

Following [6] we sub-divide this group into:

“(a) Novice Programmers:
== @.g. having never heard of generics,

3-137

PR N R P Te e e L te L te Lt e e e TN T e e e e e e e e LN
o » - P - P M .. - . » - - - - - . . - -
N TR L RN PSR AT IR O ".‘.""'.\'-\-"-,' Wy W W, . .

v
> 1
.

. L
.'_l'; !'l.'l, .,
o 7 '.".'.._- "

s

a
.

r
L4
A A

R IS
l..l’l
P

2
o
P

L 4
’

L}
I L
0,




ave & 4B

“he
Dratt

Formal - -
Defintion 26
ot Ada

(b) Practising Programmers:
-~ e.g. users of generic packages,
(c) Sophisticated Programmers:
-- e.g. producers of generic packages."”

The position of [6] seems to be that neither of these groups
should or will be potential users of an Ada FD. Ve tend to con-
cur.

Instead, we believe that other user groups, in particular educa-
tors (writers of reference manuals and textbooks on Ada), and
local experts (i.e. programming consultants), should/will act
as intermediaries between programmers and an Ada FD.
In [5]), on the other hand, a useful emphasis is put on the rdle
of the programmers vis-a-vis an Ada FD: discrepancies (found
by programmers)

{l1) between a validated compiler and reference manuals or

(2) between two validated compilers, and

(3) clarifications of language points which are unclear in
reference manuals

should be duly communicated to the definers and, subsequently
the maintainers of an Ada FD.

3.4 Standardization

Members of language standardization committees (ISO, ECMA, ANSI,
BSI, DoD) and language maintenance committee (Ada LMC) have many
rdles [6]: "they act upon advice from validators (to resolve
mis-interpretations), from designers and reviewers (to decide
(between) possible changes)", and from implementors (e.g. to help
easing the burden of compiler realization); and they are, in
cases, otherwise influenced by e.g. manufacturers' wishes (to
sub- or super-set the language, to interface it to database
languages, etc.).

.- e -

I g & B & B @ MR . 8 W > aa & B




\

s

Dt
orat - 27 -

Definition
of Ada

It is believed that members of such committees [6] "should be
most familiar with an Ada FD, and interested in its maintenance".
Their use of an Ada FD and its updates should be to help decide
on, or between proposed language changes. In attempting to
introduce a language change into an Ada FD, insight might be
gained as to the desirability of such a change. We are referring
here to the ease (naturalness) (or difficulty (artificiality))
with which such a change can be introduced into an Ada FD, to
the containment (or propagation) of language changes, and to
the reduction (or expansion) in size of an Ada FD that proposed
language changes might incur.

3.5 Teachers, Instructors and Programming Consultants

To this class we count the writers of text books, reference
manuals, and programmers' guides on Ada. And we shall illustra-
tively see their rdle vis-a-vis Ada in this 1light, only.

It is [6] "expected from them that they spend some time study-
ing an Ada FD". And it is believed that they should be able,
from such reading, to extract various levels of informal docu-
ments, also representing various views on Ada. 1Included among
these, should be the ability to extract various kinds of language
subsets for student and programmer introduction and programming
specialization.

In addition, they should be able to consult the Ada FD on
language issues arising from their involvement in deeper tech-
nicalities, e.g. where, on behalf of programmers and implemen-
tors, they find the kind of discrepancies listed in section 3.3

3.6 Scientists

In [6], this group of users of an Ada FD is also called for-

malists.

R Al A g el lnl Selb Anl Sl Anil Al Andl A e ol *afhr e -ad TW' 5

LAY | APl AT (TR

RS SAUUEIN

AP

PRV AP S VO




AD-R172 747 PROCEEDINGS OF THE IDA CINSTITUTE FOR DEFENSE ﬂlﬂLVSES) 4“4
SHOP ON FORHR (U) INSTITUTE FOR DEFENSE RNALYSES

LE RNDRIR YA W T NRAYFIELD ET AL. NOV 8

UNCLASSIFIED DECL IDAHO39579 xon/un 85-390379

5 lDﬁ-H-135

---,




o
F

EEER
==
B

Il

o E5

e

I

=
N
o

rer
4
Er

B S U P P I Bt T W e W BT L N B s TV TN BT J9 5. 36, ™ 38 A% % 0 Y ‘-“J



(It will basically be computer scientists who will produce an
Ada PD.)

Formalists (computer scientists) could potentially be extensive
users of an Ada FD. Their uses of an Ada Fd could be as a basis
for [6]:

(1) the derivation of proof rules for Ada programs - given
that the Ada FD in question is not itself formulated in
terms of proof rules:

(2) the derivation of Ada program transformation rules -
possibly for use in programming or in compiler op-
timization; and

Y

(3) the derivation of a co-ordinated formal semantics of a
specification language for defining program properties.

. ux e B

Point (3) is an extension of points (1-2). In addition, an Ada
FD could be used by formalists as a departure point for:

(4) investigations into its semantic foundations, other
than (1-2-3), for example into areas that may not expli-
citly be covered by an Ada PD (areas such as: fairness,
performance, complexity, realtime concerns, etc.); or

(5) investigationl'into other, competitive semantic defini-
tion methods for the sake of fruitful (counter-)argu-
ments, the further progress of science, etc.

The production of an Ada FD is a considerable undertaking and
will result in a very large document. Such a document will like~
ly not be perfect - solving all recognizable issues, let alone
identifying all such. An Ada FD is therefore expected to be a
live document continually being questioned by scientists.

B-1490

N .,-'_.;‘.-:.

e V%

IS J A e S s N
S SRy S A

. .
> )" W

I\I




y e’ g ah i - K K\ A . g P Y )
P, O Y DA S O PR e S . e e T . - - . - - -

. he -
Oratt Ly

\ Formal S
Defintion s
of Ads . - 29 =

B
B 3.7 Validators R
.Y
! The issue of the relationship between an Ada FD and Validation -;.
is treated in (3] and [5-6]. -'5.
! {S] examines the rdle of an Ada FD document w.r.t. the functicns _:
of an Ada compiler validation centre. [3] examines postulated s
“_: desirable relations between an Ada FD and the so-called ACVC ‘;'s
test suite. [6] effectively summarizes [5]. "
- The issues raised by [3] are dealt with in our section 5.10. We =
" now summarize [5-6] and also inject additional points.
By validation in general we mean a process, between a customer ::-f.
o and a supplier, whose aim it is to improve confidence in the ¢
correctness of a specification, a design, or an implementation
ff‘j (i.e. code), or in the claim that a specification, a design, or E"‘
i an implementation fulfils given requirements. .
o
i in general we see such a process as being carried out by some -~
- combination of formal proofs of correctness, and test case ex- St
. ecution (i.e. testing). A proof of correctness would be of an ,’,.:
: implementation with respect to a specification. The proof (of a :::.
theorem) could either be provided by a theorem prover, or a ma- '1:
ﬂ nually provided proof could be verified by a proof checker, or \.
L by some combination of the two. The theorem is stated by sup- .:::;
’e, plier and customer in unison. The selection of test cases and ‘-':-
L'\ their expected results is likewise a contractual issue between ,_.:
supplier and customer. \
:':: ;:
" Testing is a combination of two things: (1) a systematic and ;“‘
:‘_\, organized search for a counter-example to a claim that a speci- E:
v.',‘ fication, a design, or an implementation is correct, and (2) =~
the (possibly partial) execution of a specification (etc.) in _
"3 order to demonstrate that it (they) fulfils some non-functional :-:‘_:
. requirements. Correctness proofs usually only tackle functional :-‘,
- (formalizable) requirements. On this very general background, N
b the validators' use of an Ada FD is many-fold: -
*. :‘-:.'
b 5
. i
. B-141
-

N 3 . . . .. . €, . . IR N PN LY - <. . . B
L |.‘l'. ,‘l S, \\ \ "' v ‘\.$ VAN Y o "5 “\‘n\ - > 2 ¥ -\.' e e SO .‘.' AN




Y i

R s_ 2, 5,0,

A

et

Format - 30 -

(1) as a basis for organizing the systematic search for coun-
ter-examples to claimed proofs,

(2) as a basis for generating test programs - both correct
and in-correct, and

(3) as a basis for deciding on tests for non-functional, i.e.
unspecified properties.

Concerning (2) there are two issues related to the possibility
of using an Ada FD: (1) to synthectically generate correct and,
desirably, incorrect Ada programs, and (II) to generate the
kind of answers a compiler should output upon (or while) execut-
ing such generated programs.

Very little knowledge is available in these areas (1-2-3). [6]
mentions [28] as a possible source of inspiration.

(A

Sre
(%

[ I I

.................

. e A N e AT T T e g e e - e et ars
A AR R R N Sy * RN NI MRELLH A A G ey



-31-

4. LANGUAGE SPECIFICATIONS

References [10,11,12,15,16,17] contain specific language spe-
cification proposals. [5] actually lists a more refined list of
specification varieties than [16]). Section 4.0 borrows from [5].
Section 4.2 borrows from [16].

4.0 Language Description Categories

A language can be defined in either of a number of alternative,
contrasting or complementing ways:

(1) through a Reference Manual [23], and its Rationale [24]
(2) through an Implementation Guide [20]

(3) through an Implementation [19]

(4) mathematically

[5) also lists the possibility of a pseudo-formal (notational)
description, which 1lies somewhere between (1) and (4) in
that only an informal definition might be given for the descrip-
tion language itself, whereas its syntax loocks formal. In a
sense, [21], [25]), and, to a small extent, [22] could be
rightfully accused of being pseudo-formal.

4.0.1 Reference Manuals and Rationale

By a lanquage reference manual (LRM), we operationally understand
an informal document which in a technically carefully controlled
dialect of a natural language, e.9. English, explains the seman-
tics of another language, namely the programming language. (The
syntax is usually given by some BNF-like grammer.)

By a programming language rationale is understood a necessarily

informal document which explains the pragmatics of the language.
(It is informal since pragmatics is an informal issue.)

B-143

..........

~ e e g % NN LY .’A-" .‘- ..4.\- N .“..'— \."’.-\. . ..\,..... o - ) o .o e, R ."_..-'_.. _'- S -(-"_ ..
T Y e A g A S A R L T ST T A SO JURES U RS

8 .' 'I"I..d:'f-' J‘. 4
S

Y'l
ba

..,.;
P AR
\

v‘:‘"'n\' |

I"I- j’ 'S
N RN
\l k ¢
l‘ .l,"-

Y
»
»

2

»,° 4
v




A iy - Y » \J R - AR R EE iR A 4 N S SR AER A DA

*‘ -
) The M
z Pomma- - 32 - s

- Definition )

K of Ada

K

; 5

»

(X

1

b ]

, An LRM [23] does exist, and a draft partial Rationale [24] now Vi
j exists. X
5y .:-:
X ~u
> Usually, LRMs suffer from lack of precision due to the use of

&

a natural (national) language. To alleviate the lack of -
A.‘

: precision, the description often becomes stilted, legalistic. .

i [26]) could be accused of that.

\

)

Rationale documents are the source of the non-functional defi-
o nitions and pragmatic information - where LRMs tend to concen- “t
~ trate on syntax and functional semantics.

:', LRMs and Rationales are deemed indispensable for reasons of

readability, but suffer in accesibility and referenceability,
- as defined in section 5.6. r
¥ N

4.0.2 Implementors' Guide B
- By an implementors' guide (for some programming language), is N
. understood a (formal or informal) document which lists any o
3 number of hints on how to implement a processor for that

language. !
. For Ada, there was an implementors guide [20]. 1Its usefulness e

was rather limited. [20] suffers from four things: (1) it is 5

based on an informal LRM, (2) it was issued at a time when .
A Ada was still being (re-)designed, (3) it is itself informal, ‘
> and (4) it could be critisized for reflecting an out- B
:'. dated compiler writing technology. i:
> As a reference to a programming language for others than .
.: implementors, an implementors' guide is usually almost useless. j:::
N

Insofar, as an implementors' guide takes the opportunity to o

clarify language semantics that is left unclear in an LRM, .

such a guide is useful, but we consider the place and time
ill=chosen precise semantics should be given in the LRM and
. in an Ada PD.




Insofar, as an implementors’ guide enumerates ranges of permis-
sible implementation choices, such a guide is considered most
useful.

Finally, the concurrent existence of both an LRM, an Im-
pPlementors Guide, and possibly an Ada FD poses the problem of
maintaining consistency. Especially, if the last two are
derived from an LRM. We advise the other way around:

the derivation of an LRM and Implementors Guide(s) from an FD.

4.0.3 Compiler as Language Describer

In the 1960's it was a commonly taken view that compilers de-
fined their languages [19). As long as programs in what was
believed to be one language were not ported between different
compilers (usually on different computer mainframes), no real
harm seemed imminent. With porting, or copying program frag-
ments between different installations, problems became ap-
parent. By porting compilers, these problems seemed to dis-
appear for a while. There was, and maybe still is, a need,
within one mainframe to make use of distinct processors for
supposedly the same language, e.g. compilers which optimize,
for production run-time performance, or interpreters with
good programming time acbugging facilities, or, perhaps more
relevant, which ‘prove’ program properties!

We take the view that neither of these kinds of processors

define their language, but that they are “derived" from a
(possibly formal) definition.

4.0.4 PFormal Definition

The fourth language description, or definition, possibility
is that of a formal definition. We devote sections 4.1-2 to
that subject.




The
Jraft
Deftrut
ition
of Ada - 34 -

4.1 What is meant by ‘Formal’

From the terminology, appendix B, we get definitions of what
is meant by formal: formal development, formal document, for-
mal language, formal method, and formal proof. The essence
of 'formal' is that whatever is formal is expressed within a
formal system, i.e. in a formal language, either being, or
accompanied by, a proof system.

The notion of a formal system is invented in this century.
It was introduced in order to tackle the foundations of mathe-
matics. As such, ‘formal systems' belong to meta-mathematics.

And as such, they certainly run the danger of loosing a hold
in reality [40].

Mathematics, for milleniums, was tightly rooted in observa-
tions in physics and in everyday human life. Accordingly,
much mathematics was presented with analogies to this reality.
Meta-mathematics tends to be presented at most by reference
to mathematics - a universe in which arbitrary, finite and
infinite, imaginable and un-imaginable objects may exist.

Computer science deals, not with mathematics, but with the
objects that may exist in machines and in their man-made cre-
ation. To do computer science, we use mathematics. But we
follow, in this project, the dogma that this mathematics
should be firmly related to the programming language world
as outlined in sections 2 and 3.

4.2 Formalization Techniques

4.2.0 Deductive and Model-Oriented Specifications

For the purposes of the present subject, an Ada FD, we
distinguish between two styles, or aims, of formalization:

Deductive, Assertional, or Property-Oriented, and
Constructive, or Model-Oriented.

"It

ot
o
i

e

I

N

N By 8
.

............

e N N N T T T T T 5



~ o
.
-
| The S o,

:ﬁ Dratt - 35 - -
! of Ada
I Q
® '
R |
S,
! (We refer to the terminology for the definition of these .'
terms.) f-\.'
. )
E-;: Proof system oriented specifications, i.e. specifications ::-
which directly lend themself to reasoning (about the object >
E defined, and to be implemented), are typically deductive ..-_
- (assertional, property-oriented). Such specifications, when .-
. expressed freely, usually require a proof of their (own)
‘:—; consistency and completeness, and of the fact that they do .
. define something. That is: that they have at least one -
;.:T model. ::-
i Model-Oriented specifications, as the name implies, directly E"ﬁ
E describe, i.e. are, the models. It is in that sense that
they are constructive. -
; %
r Usually, one desires the properties, but specifies a model. e
Several reasons may account for this: (1) most software people, ,
h today, are trained to think model-oriented, (2) model-oriented g
specification techniques are, today, capable of tackling the ,-
's definition of far more complex systems than the deductive :_:
' techniques appear to be, (3) what is specified has to be ::§
- implemented, i.e. one has to find a model - sooner or later, ‘e
v and (4) the state-of-the-art in going from a deductive defini- o
) tion to a constructive specification is somewhat lacking. ‘\'
2 X
- A property-oriented definition lies close to the customer's 'w?
way of formulating his requirements, whereas a constructive !
'-f-f specification similarly lies close to the supplier's way of ‘_t:'
thinking of his job: that of developing an implementation '_::
\.- from the specification. :
L o
s, Ideally, we would like to. see first a pure, deductive defini- ".j.:
R tion (of, say, Ada), and then, from it, rigorously derive a N
N constructive specification. ;: .
’ >
‘ Realistically, we may hope that it is possible to prove what :
o is deductively defined (i.e. a deductive definitions' axioms *_
:::~ (etc.)) to be satisfied (i.e. to be properties) of a construc- Y
ol




tively specified model.

From the above, the reader may guess that the current Ada FD
project takes its departure point in a model-oriented world,
but that everything will be done, within the evolving Ada FD,
to secure the possibility of deriving properties rather
directly.

A number of specification techniques cover the span from de-
ductive to model-oriented definitions: Axiomatic, Algebraic,
Structural Operational, Denotational and Mechanical Semantics.
A short, very cursory survey of these will now be made.

4.2.1 Axiomatic Semantics

Roughly, an axiomatic semantics specifies relations between
states of the specified system.

In an axiomatic specification of a programming language, its
semantics is given in terms of axioms and deduction rules
(for using these axioms).

[36, 37] are seminal references on this subject.

Such axiom systems seem ideal as proof systems for the lan-
guage they specify. The problem is, however, that they become
rather cumberscme, if not outright in-applicable, when having
to deal with a complex language like Ada. Focal points for
complexity are: gotos, procedures, parameter passing, and
tasking. '

This rather negatively sounding dismissal of Axiomatic Seman-
tics as a basis for an Ada FD must not be mis-understood.

Beautiful languages can be designed and effectively used,
their semantics being so specified. [42, 43] provide con-
vincing evidence. Here, the axioms are expressed in a aif-
ferent style and are called laws. Most likely, future lan-
guages will be designed on the basis of their proof system




The

Definition
of Ada

being simultaneocusly evolved!

4.2.2 Algebraic Semantics

An algebraic semantics specifies the meaning of a system as a
class of algebras.

In an algebraic specification of a programming language, its
semantics is given in terms of an algebra presentation,
consisting of a signature and a set of axioms. Usually, an
algebraic presentation is (syntactically) constrained so as
to guarantee the existence of models. The meaning of an al-
gebra presentation is usually some class (or category) of
algebras. The axioms are usually equationally specified.

[35) provides today's most accessible introduction to alge-
braic semantics.

Again, we find that algebraic semantics specifications ought
to be ideal as a basis for language proof systems. No alge-
braic specification has yet been given for any sizable clas-
sical language (ALGOL 60 or larger), let alone for concurrency
aspects of such a language. Problems in their applicability
(in addition to those of axiomatic semantics techniques) seem
to be their inadequacy in handling higher order functions (pro-
cedures with procedure parameters) and tasking.

This rather negatively sounding dismissal of Algebraic Seman-
tics must not be misunderstood. What we are indicating is
only that we may not be defining (parts of) Ada directly in
terms of algebraic semantics. You may find, however, that
the definition style we eventually adopt will involve (a)
definition language(s) the semantics of which may be given
algebraically.

3-149

T

X

o oYY
| A

- .‘

LV

r Ty e p v W
f‘l’ ll:”

"
-.",“,

Ty
o Ry s L

v
e
e

b AL A T S UL P
3 O
." .n‘ 'l‘:l':l', ' s s l‘ e




- 00 % Blle A0 i D i h S vhdme o I DAL Sub b e A AL AL S AL RIS SUAAL L AEASA R AL AR AU AR R S A AT A Al
The .
Orart INGS
Formal

v
. o

. .
Ta®a'e’a

- 38 -

4.2.3 Denctational Semantics

A Denotational Semantics defines the meaning of a system to

be a set of mathematical objects (like sets, functions, cate-
gories).

In a denctational specification of a programming language, its
semantics is usually given as follows. First, one identifies
the specific mathematical object one wishes to attach to simple
identifiers of programs. [Examples are: variable identifiers
may denote functions from so-called enviromments to locations,
label identifiers may denote so-called continuations, i.e.
functions from stores to stores, procedure identifiers may de-
note functions from argument (denotation) lists to continu-
ations, etc.] Thus, we first establish the meaning of simple
language constructs. Then we express the meaning of composite
language constructs as functions of the meaning of their con-
stituent components. (This latter is really an algebraic
(homomorphic) principle, and not necessarily characteristic
only of denotational specifications.)

Denotational specifications directly specify models. As such,
they are not directly useful as proof systems, and not much
aystematic work has been done, nor are systematic techniques
available for the extraction of proof systems from denotational
specifications. The power of denotational semantics is that
it deals effectively with gotos, procedures, parameters, and
exceptions and with most other deterministic language features.
Problems of denotational semantics are shared variables,
Ada-like processes, and non-determinism. We refer here to
the availability of techniques proven on large scale applica-
tions. There are recent research results (like [44]) which
appear very promising, but for this project they have, unfor-
tunately as it may seem, to be discounted for exactly the
reason of their experimental nature.

e,

T

¢
L A

A‘f“

=




et - 39 -
Formai

Definition
of Ada

4.2.4 Structural Operational Semantics

A Structured Operational Semantics (SOS) defines the meaning
of a system by the set of all allowable transition sequences
that may be observed in a system (state) while subjected to
execution.

It is in this latter sense (execution) that SOS is "opera-
tional®". It is structured in that transition rules are in-
ductively specified, based on the structure of the system in-
put language.

[32, 45] provide first and latest references to SOS.

An SOS specification is usually given in terms of a set of
transition rules and rules of induction for using the former.
A transition rule consists of a triple: the "before"”, the
“after”, and the "condition" (label) under which a system may
transit from a before configyuration to an after configuration.
Configurations and labels are rather free-wheeling notions,
and may involve state components such as stores, program frag-
ments and other control information.

SOS specifications eminently model non-deterministic and con-
current language aspects, in addition to trivially being able
to model deterministic features. SOS specifications appear
promising as a basis for direct or derived proof systems. SOS
specification techniques, when brought to bear on the full
complexities of Ada tend to result in rather complex con-
figurations and labels.

4.2.5 Other Specification Techniques

We have indicated that none of the above techniques, except
perhaps SOS, is fully capable of handling the specification
of all aspects of Ada.




In addition to the above techniques, others have been
used and/or proposed:

SEMANOL [17, 46], VDL [34]), Meta-IV/CSP [21]. This is not
the place for even a cursory description of these more
operational (mechanical) definition styles.

It is implied in the above rather cursory remarks that
the present Ada FD will not entirely rely on any one of them.
[17] points out, very importantly so, the need for, first,
establishing a model for the underlying semantics when dealing
with a complicated system like Ada. That is: that one, in a
sense, starts afresh, forgetting.‘for a while, the dogmas of
e.g. Axiomatic, Algebraic, or Denotational Semantics, i.e.
of their underlying mathematics.

4.3 The Ada FD Approgch

Although not intrinsic to the purpose of this document,
we do present a very cursory overview of the approach to an
Ada FD currently taken within the project.

D-SMoLCS [33]

The Method

In the D-SMoLCS (Denctational SMolLCS) approach, the formal
semantics of Ada is presented in two hierarchical, top-down
steps:

(1) Denotational Model

(I1) Semantic Algebras (SMoLCS)

It is developed in the reverse order of thesel

‘I
s

t

B T )
B

s
[ #

Iy

R

f‘ .".." .,

s__'oj.

RO

~1B




The
Formal
Oefinition
of Ada

== I: Denotational Model

The denotational model, in order to model all aspects of con-

currency and non-determinism, will be expressed using a number

of operators like e.g. | (for “in parallel®), (overloaded) +

(for “choice"), (for “followed by"), etc. This model can be
based on the use of the exit mechanism, and in either an
imperative or an applicative style (as possible in Meta-1IV),

or on the use of a continuation mechanism (also possible in
Meta-1V).

(As a consequence, the resulting model is one which can be
read by humans.)

== I1: Semantic Algebras (SMolCS)

The denotations of the model presented in the first step are
presented in this step. On one hand there are these denota-
tions, and, on the other hand, there are operations (like
“f*, %e", " %, ",", ";", etc.) on them. The meanings of
these operators are likewise presented.

These presentations are given in five configurational, bottom-
up sub-steps:
Basic Transition System

In the Basic Transition System sub-step, we specify what the
element Actions of the individual processes are.

Synchronization

To a Basic Transition System, we add rules (parameters)
governing the synchronization points between processes, i.e.
we define atomic actions.

o« o« =% Vo 1)
) ") L9y
L ‘.-l, Yy l'- o }‘\ X



- >
-
-~

‘-"v-

X

270’ alr s

[Fy” &
-’

| SASEINRITNOS

A
ey At Yy

Py

5 l\ “.l% :. l" A‘

I'IJI..

Sl
=t

“
<
“
LY
A
&

“he
013"' - 42 -
Definition
ot Ads
Parallelism

Given a Synchronized System, we add rules (parameters) for the
(parallel) (e.g. mutually exclusive shared update) composition
of processes.

Monitoring
Given a Parallel System, we add rules (parameters) which define

restrictions on the behaviour of the processes of the parallel
system.

Observational Semantics

Given a Monitored System we may now wish to interpret the
given semantics at any one of a number of levels of observa-
tional abstraction: input/output, interleaing, fair-merging,
truly parallel, etc. This is done by suitably parameterizing
the algebraic specifications which have been given of the
synchronization, paralleism, and monitoring operators. '

D=SMolLCS: Its Semantics

SMOLCS can be embedded in an SOS specification. For the sake
of obtaining the much desired properties of the Observational
Semantics, Algebraic embeddings have instead been used. Other,
more functional approaches are conceivable.

The Current Ada FD Components

Basically, we plan to divide the Ada FD itself, into two-by-
three components:

(1) A static, and
(2) a dynamic semantics specification - each consisting of

-3

A
| QL

il

&=

2R

S N

.
¥

€.

7

o




2, 73
§ 2 T8
Definition KK
of Ads
. s
. 2.’
' '\.:;
t::)
E (1) syntactic and . =
{2) semantic domain specifications, and ’: ‘
N (3) the semantic function definitions/equations. :a‘,
8 AN
v
L‘" ‘ut"‘
The domain specifications will be specified in Scott theory, 5L,
F i.e. as possibly reflexive domains. The notational style is ¥
A basically that of Meta=IV. 4
‘4
vy
L The static semantics functions will basically be centered ‘_‘:'
around a pure, applicative Meta-IV subset (e.g. not using
%y the exit mechanism), but may define certain static seman- y
[ AN
a tics domains and operations upon their objects algebraically. -3
K4
" K
E The dynamic semantics is presently planned to be based on the s
D-SMoLCS approach. For practical reasons it will consist of
'F,Z: three parts: “sequential Ada", "tasking Ada", and "Input/Out-
e put Ada“. ;:Z‘.:
' X
KN,
L 'J'\
R o,
k? R
-
| Y
R )
f'h
- o oo
0 o}
\ o
J N
rr .
v N
R o
I

I
‘< >
(o 'J“
Eq" :-f‘
L “l

Y

AN

g B-155 ' ~

J‘\ > \‘\f.’w".-'\-‘\\_.\"‘: N

---------

................
---------------

A
;
r,
3
;
s
<
‘ -
3

TS YA
Al




Oratt

Formai

Oefimtion
Ada

- 44 -

B-156

CY ""'&':\'a"%';-.'

.“.n\

TN e

- >
& e

.
‘e 'y

v

e

L4
e

1B

£ L RIS

P LA,

T SN



‘e d' AV DR RN R RN § 2 0.8 AV ATk T Sp pia-ata-o}

e - 45 - e
Qran ‘4
i - -
i 2. REQUIREMENTS TO THE Ada FD ');'
B | 3
First, we give some overviews. The Ada FD, it is claimed in (1], e
! should be: —
(1) A Legal Contract, g
@ (2) Consistent and Complete, Y
(3) Comprehensible and Precise, f;
g (4) Correct, and believed Correct (latter from [8]), 7y
(S) Accessible and Referenceable (from [8]), '.'.t
N (6) Permissive - where appropriate (from [8]), ',‘f\
E (7) Un-biased, e
(8) Suitable as a basis for: .
p (8.1) writing user manuals, textbooks, and primers, ‘
R (8.2) developing language processors, and -';:L:
- (8.3) validation, - and ,;.'
'e (9) Suitable as a basis for: . £
(9.1) proving correctness of Ada processors, N
:‘ (9.2) proving correctness of specified Ada programs, and ;
~ (9.3) generating test-programs for validation. ;‘3'
S
i In [2], we find that an Ada FD might: J_
:l:§
A (1) resolve ambiguous points in the existing standard, =
E:- (2) omit points of the standard, and \‘
(3) include points not addressed in standard.
. ~
(It should, to be proper, be observed that [2] asks "to what ex- .
'.:::' tent an Ada FD" should address (1-2-3).) -
™~ "
" In [3], it is argued that an Ada FD should somehow be correlated :
‘;‘\-: to the so-called "ACVC test suite” (jargon for an "Ada Compi-
ler Validation Capability"” collection of some 2000 test pro- ;_;
£, grams). .,
vé .
. From [4]), we extract the following requirements: N
3 A
(1) Basis for Compiler Writing, ;E
o (2) Compiler Validation, AR
(3) Proof of Compiler Correctness,
& i
¥ >
~




Oratt - 46 -
Formal
Oefintion
of Ada .
(4) Basis for deriving an Axiomatic Proof System,

(6)
(7)
(8)
(9)
(10)
(11)
(12)

Basis for deriving Program Transformation and Optimi-
zation Rules,

Basis for Rapid Prototyping,

That it be Unique (no Alternatives),

Complementing and Consistent with LRM,

Exposing existing/current LRM inconsistencies,
Guiding Language Clarification,

Machine Processable, and

Correlated to ANNA [18].

In (5], we find the following requirements:

(1)
(2)
(3)
(4)
(5)
(6)
(7)

Completeness and Consistency,
No Ambiguities,

No Over-Specification,
Readable,

Maintainable,

Modular, and

Basis for Proofs.

In [6], related to user categories, see sect. 3 above, we again
find a good overview of requirements to an Ada FD: namely that

it be suit

(1)

(2)

(3)

(4)

(5)

able for use:

as a source document: by formalists (i.e. be formal),
validators (i.e. be executable), implementors, educa-
tors, and designers,

as a canonical contract (standards) document: by stan-
dardizers,

in implementations: free from implementation bias and
permissive where appropriate,

as a reference document: by educators and local ex-

perts, and be: comprehensible, concise, accessible and
referenceable, and

by formalists, validators, and implementors: consis-
tent and complete, and believed correct.

[y
il

-'L:: .:., ‘-""“

[of)

L |

SN

m




|

St

4

E‘n 47
2 - -

Defintion
of Ada

[6] seems to have used [1] and [8]‘'s requirements, but relating
them to user groups which are missing in [1] and [8].

In [7], we £find the requirements that an Ada FD should be:
(1) machine readable (for tool development.),
(2) human readable, and
(3) accompanied by user's guides, structured by user

target groups, (e.g. as listed in section 3 [5]).

From these lists, we have then extracted the structure of this

section:
1 Legal Contract
2 Consistent and Complete
3 Comprehensive and Concise
4 Correct and Believed Correct
5 Accessible and Referenceable
6 Permissive
7 Implementation Independent
8 Basis for Processor Development
9 Basis for Validation
10 Basis for Proof Systems
1l Mechanizable
12 Basis for Rapid Prototyping
13 Correlatable
14 Basis for Document Derivation
15 Maintainable

S.1 Legal Contract

By an Ada FD constituting a 'legal contract', we understand some-
thing that eventually borders upon the legal meaning of 'legal
contract’', namely that a user can rely on his 'formal' under-
standing to be the same as the developers' similar understanding.
This point is then ultimately seen as leading to the derived
requirement that a definition is formal.

‘ ool o
s. " 1

» - s"a

53,

2

-~

c 4

~
-

:‘ ‘S .

.I;;l;:l e
aa o n s,

A
S
VIO

' .
% 0t et

#

A S e e e
AL S

LY
-
.
»
o
»

2t . fc.n
»



ot Ada

Thus, a formal definition could ultimately serve as a legal
document in a court of law.

5.2 Consistent and Complete

By an Ada FD being ‘'consistent and complete’, we mean what
these terms mean in mathematical logic.

5.3 Comprehensive and Concise

By an Ada FD being ‘'comprehensive’, is meant a relative thing:
that any person., brought up in reading formal definitions (of
such-and-such style), will have no undue, or unreasonable diffi-
culty in reading such definitions.

By -an Ada FD being ‘concise', we similarly mean a relative
thing: that the definition is precise and not unduly
long. '

(Both properties are definition-style independent, i.e. are
solely a function of the success with which the definers have
achieved their goal, i.e. their ability to use a given defini-
tion style according to its best intentions.)

5.4 Correct and Believed Correct

A formal definition of the functional aspects of a language is
‘correct’ if it meets the requirements of the customer of that
language. Mostly, these reguirements are informally stated.
Hence, we mean something not achievable when we require a
definition to be correct! Or we could claim that a definition,
if it is complete and consistent, “"by definition" is correct.

The phrase, 'believed correct', is therefore introduced. By an
Ada FD being ‘believed correct', we mean something relative: if
the definition is formal, then it "mirrors", in some informal
sense of "equivalence", a "similarly official” informal defini-

[ 7

X4

.




Dratt = 49‘ -

N
LR

E o'.Ada
. A
. tion. That is, there are no obvious discrepancies between the :‘_
E’ Ada FD and the original intentions (as for example expressed in j-'.;
) N
language requirements documents), or informally expressed speci- e
! fications, viz.: the LRM. g
4 l::\
W
- 5.5 Accessible and Referenceable hal
- Y
) y
N

By an Ada FD being ‘accessible and referencable’', we mean some-
thing a bit more absolute.

b
Xy
~

4 o
[ To the Ada programmer and the Ada language processor developer, _‘
L ’ the Ada language consists of a number of commonly agreed, ver- W
| bally identifyable, semantic ideas (concepts, constructs, no- N
v;':j tions). :::'-{
. o
-~ Answers to questions about properties of each of these should \-
E preferably be found, say, within the short span of a page of a =
] definition, i.e. be accessed by a rather direct look-up process. i:
’ Vice-versa: once this is the case, then one can refer uniquely _::
R to such definition pages (etc.). ‘ :::
i {(This ‘ability' is partly a language, and partly a ‘definition'’
property: i.e. if the language otherwise permits, then the "

E;_:-: above 'locality’ property should be satisfied.) "
LR

5.6 Permissive

| JP S R MR A
A o K

v"_:. By an Ada FD being 'permissive’, we mean that the definition, :
R ideally, expresses all permitted aspects of 'order of evaluation',
N ‘optimization’, ‘parallellism', ‘'non-determinism', etc. o
x: 3
\::'
6‘:" 5.7 Implementation Independent NS
p By an Ada FD being 'free from implementation bias', we mean some- :::'f
f-‘ thing similar to permissiveness: namely, that the definition '.»‘\"
does not unduly favour one style of implementation over another :::
"i where such choices were not intended by the language architechts. o
b
O."l
" %
) N
3
! 3-161 o~

e T Te Te e e e Rt e 4 e T T P
.. LI Cha®

s )" N - A .\ P N L) \...-(V‘."' .-'*‘..'..\.u L -1".'.' et . C g ,
R R N AR AN v g 3 N R A L S RO s




5.8 Basis for Processor Development

By an Ada FD being ‘'suitable as a basis for interpreter, compi-
ler, and support system development', we mean that the develop-
ment covers each and every aspect of the language, and that
this coverage can be secured through use of the definition.

-~ Correctness of Processor Development

By an Ada FD being ‘'suitable as a basis for proving correctness
of Ada processors', we only mean the constructive, a priori,
proof of correctness of the development of an Ada processor
(not any, a posteriori, given such processor). Thus, we are,
here, only thinking of an Ada FD lérving as the departure point
for actual processor development. And we primarily think of
this development as transforming, refining and enriching an Ada
FD, via stages of development, ie. via abstract and con-
crete designs, to actual implementations (code).

5.9 Basis for Validation

By ‘suitable as a basis for validation', we mean: it should be
possible to construct a test-suite of Ada programs for the pur-
poses of testing any given compiler.

The derivation of test programs should be transparent: i.e. a
human should be convinced that these are "real"” test-programs.
The derivation should be "exhaustive”, i.e. convincingly span a
necessary spectrum of programs. The derivation should foresee a
range of implementations: i.e. the test programs should not
only test the 'language structure'’, but also foreseeable ‘'proces-
sor structures'.

lff Pl

P

ii




A % ! * R
A e AL LR A e [N RS L0 i N LRI A G A R A

. Ovat - 51 - -.
Format PR
Defirition R
E of Ads .
A
E: == Conformance with ACVC Test Suite [3] o~
: 09
By ‘conformance between an Ada FD and the ACVC test suite', is N7
E meant one of the following: W
-
z )
gi (1) Ignore this conformance and “verify" conformance :
between LRM and an Ada FD. .::l':j
‘E (2) Use informal reasoning to argue that the ACVC test pro- f:
grams are indeed processed correctly by the Ada FD,
.o;f.'_ or, which may be a posaibility, show ACVC test programs .j’,:C:
e to not be correct test programs (i.e..testing contrary JE
. to the intentions of the language designers, etc.). o
l:-: ':-:':.
-, . -::‘.
(3) Use formal proof techniques, manually constructed and ::f-::
b verified, to guarantee what (2) sets out to achieve. C::::
- (4) Use formal proof techniques, mechanically verified, to ‘
x’. u'.:a'
5 achieve (2). e
- :‘\;
AL
i (S) Use prototyping techniques (see sect. 5.12) to a- =
chieve (2). DS
};:.' (6-7) Use formal compiler derivation techniques (see sect. ::::::
5.8) to achieve (2). L
r (8) Execute the Ada FD itself, directly, to achieve (2). :';f-:
L -\-..
)y :::_".
. ;":"
5.10 Basis for Proof Systems ~
% | L
When saying that an Ada FD could be ‘suitable as a basis for s
- proving correctness of specified Ada programs', we assume that ‘;-
i'i: the Ada programs are somehow specified, i.e. that certain as- e
sertions are made regarding their properties, and then that
;:Q the definition 'formally’ permits these to be shown to hold. ‘_:'
e o3
%k

This either assumes that the definition is expressed in the

form of a (set of) proof system(s), or requires that a proof

system (or set of proof systems) is derivable from the defini-
i" tiono

s
v

. 7
] ‘::.'IL
Vet

s
'
-

<. (AN
it Nyt

‘\4_\ '

! B-163 G
RS

o

P T PR S e DU I e NP SR IR I N N T LT e T e
ARSI G R I S R O A AN e AT AT AT e e N

- 2 )

. . Tm ~ ™
G PN A

L . - .
Lo, e e RS IRV




...... - e, =

Y.
.

- L]
L)

"he
Oratt - 52 -
Formai
Defimtion
ot Ada

5.11 Mechanizable

By an Ada FD being ‘'mechanizable’, we mean that it be machine
processable.

Reasons for wanting ‘mechanizability' are many-fold:

(1) It would facilitate maintenance, and, therefore that an
Ada FD is kept up-to-date. See sect. 5.15.

(2) It would facilitate correlation to other mechanized
Ada documents: the LRM, ANNA, DIANA, etc. See sect. 5.13.

(3) It could facilitate scientific experiments in the areas
suggested in sect. 3.6.

5.12 Basis for Prototxging

The act of Ada prototyping leads to a prototype Ada compile£ or
translator, and typically involves transliterating, if possible,
the Ada FD directly into some high level executable code, for
example SETL [30]. Rapid prototyping means the speedy, inex-
pPensive production of a piece of software that is acceptable
as a vehicle for a number of customer “testing” purposes.

S.13 Correlatable

By an Ada FD being ‘correlatable', we mean the systematic,

exhaustive, and unambiguous mapping of the formulae of an Ada
FD to the Ada LRM.

- L T ST T
A A e Y e ——

A NG A G A A A et Attt i A ot S LA St A A S G A o e sl st ol TR

oy

e e

vty A
o S



" _‘

~y -y -

'F,l f,

-
R

The

Oratt
Formal
Defirvtion
of Ada

- 53 =

5.14 Basis for Document Derivation

By an Ada FD being 'suitable as a basis for writing user langua-
ge reference manuals' (etc.), we mean that such informal texts
should be reasonably easy to develop systematically from the
Ada FD, and should be easy to relate back to the definition,
e.g. so that their 'completeness and consistency' can likewise
be asserted. Here, we are thinking of a wide variety of informal
documents: reference manuals for, naive, mature, and sophisti-

cated programmers, respectively, for implementors, for validators,

etc.

5.15 Maintainable

By an Ada FD being maintainable, we mean that the entire FD be
computerized in such a way that a number of tools can be
developed for browsing through the FD, for following correla-
tions between the FD and the LRM (and possibly the Rationale),
etc. The MENTOR [45) system appears to be a good candidate for
support for developing Ada FD maintenance tools.

5.16 Assumptions

The above, more-or-less direct requirements, are based on a num-
ber of assumptions [16]:

(Al) “The Ada language is 'complete and consistent'"

To the extent that work on a formal definition of Ada
shows this not to be the case, an arbitration procedure
could be established to secure ‘'completeness and consisten-
cy'.

The position of the current Ada FD project is this: if an
inconsistency or incompleteness is properly identified,
then no formal definition will be given, i.e. the discre-
pancy in question is left undefined!




(A2) “There are Formal Definition Techniques that will sa-

tisfy all of the above Requirements."

To the extent that this is not found to be the case (which
we can immediately assume (1)), an arbitration procedure
must be established for deciding upon acceptable compro-
mises in definition style and/or in the use of composite,
overlapping definition alternatives.

The position of the current Ada FD project is this: the
trial definition project sub-phase together with its
external reviews will constitute such a procedure.

5.17 Derived Requirements

The above (more-or-less direct) requirements and assumptions
imply a number of derived requirements.

(D1)

(D2)

(D3)

(D4)

(DS)

‘Complete and Consistent' implies "Absence of Ambiguities”.

‘Permissive’ and 'Free from Implementation Bias' implies
“No Over-Specification”.

‘Accessible and Referenceable' implies "Maintainable"“, and
“Modular”.

‘Suitable as a Basis for Implementation’' implies that one
can derive "Implementation Guide-lines" from the defini-
tion.

'Formally Defined' implies the possibility of "“Language
Definition Tools"™ such as rapid prototypers for language
(subsets), definition (‘consistency and completeness')
checkers, etc.

"q. .‘ o q' " ‘._1\ \ “*-’_‘-*-'_;.- LAyt

1y

LS

,.
' ¢
.

ey

“




The

Deatt L

N Definetion
i of Ada -55- o
oo
F‘. 6. THE ROLE AND SCOPE OF THE Ada FD :: :
-t
~ )
i
‘%

%
:
)
:

This chapter summarizes the position of the current project -
w.r.t. the idealized requirements listed in sections 5.1-5.15 ‘
inclusive. ',f

i:,'A:‘,
o oy
ol 4
L]
-~ >

(1) Legal Contract: time is probably not yet ripe for the

p computing community (suppliers and consumers) to rely on and to Ry
- trust an Ada FD to constitute a legally binding contract in a ’z
r.. court of law. ’:,‘.
- To the extent that we satisfy all subsequent requirements,
Z::- one may hope to see the present (legality) requirement being ‘_::::'
" achieved. - 5-5
& 2

Thus, we conclude that our aim is to fulfil this requirement. e

v"

;": (2) Consistent and Complete: we most emphatically desire to :"'_&
g‘h' :‘:\
T achieve this requirement. A stumbling block may, however, be o
.‘ the (pragmatic) "interpretation"” we attach to various notions 222
of erronecus, undefined, ‘'pragma shared', ‘'permissive’ (e.g. in 5
case of non-deterministic features), etc. - as opposed to "_:
o RS
;.j: the similar "interpretation” of our audience: the Ada Language f::
o designers, standardizers, other formalists, validators, etc. ::Z*-
o (3) Comprehensible and Concise: again, we most emphatically t."'
. desire our FD «0 satisfy - these requirements. One of our :.
F'-j approaches to achieving this is to correlate the FD minutely to .
the LRM; another is to annotate it, likewise minutely, to also ‘
W give an English language rendition of the formulae. This process N
o of achieving such acceptable correlations and annotations is f-j;'
. expected to feed back to the formula presentation itself. ;'::
- (4) Correct and Believed Correct: we wish to achive also _
b this goal, and basically through the same means as mentioned ~;:
f.h ...'-
N in (3)0 ::;\
ﬁ’ g
A
-:-: o
K N
o
) ) . . N
[ | B-167
'-. ! f."'
Ly
NEIRTR, {-.‘,-. " ',".' \ ' J,_.__s.’._\:\"'.. ':.".'.;"';'\""".\. ._-.‘.‘:.._: S R N '__.. ,:"..-':.\"‘.".“'.." e _.-'_..‘_._;,.".-;_-‘:_“: ..... _:.:.\._:._..




PE P et s |0

Yy A

A ]

"he
Orart

on - -
ot Ada 56

(5) Accessible and Referenceable: also this requirement is of
utmost concern to us. We most definitely wish to achieve also
this goal.

(6) Permissive: insofar as we are able to identify all such
language properties (as have permissive, implementation-wise
“non-deterministic" properties), we sha:ll be expected to also
have the Ada FD be permissivel

(7) Implementation Independence: the Ada FD will most likely be
model-oriented. Denotational (i.e. model-oriented) definitions
do not necessarily bias some implementation choices over others.
The current Ada FD will, similarly to what was indicated under
point (6) (permissiveness), strive to exhibit implementation
independence.

(8) Procesor Development: the current Ada FD project, basically
having its root in a model-oriented, but abstract way of defin-
ing Ada, will strive to produce a definition which can serve as
a departure point for interpreter, compiler and other Ada tool
development.

For classical denotational and operational definitions, like
the DDC formal description of Ada [e.g. 21], well-known methods
exist [47] which allow the systematic to rigorous development
of compilers from the language definitions. The current project,
although claiming that it will strive to produce an Ada FD
which should serve as a basis for processor development, will,
however, not address the specific issues of how to formally
derive such processors from the currently contemplated Ada FD.
How, then, do we justify our claim ? By reference to the
model-oriented, yet abstract nature of the planned Ada FD, and
by reference to e.g. [47]!

We believe that the planned Ada FD will be such that either
existing formal derivation (transformation, enrichment and
refinement) techniques apply readily, or that it will spur the
development of such techniques.

L[

a

P

O LA

-

‘A‘D

.‘




w cpie aic Mo A'

<33 O35

N ok 2N}
I

[ §00)

(Y
B Y

D)

‘ KR ETY X kTN b \ - Vag g t e t) don bap b e o'k aV

e
Oraft
on
of Ada -57=

(9) Validation: a study will or might be conducted into the
feasibility of the Ada FD serving as a basis for deriving
"ACVC-like" test programs, and a study might be made into
the feasibility of using the Ada FD to prove properties of
ACVC-like programs. No attempt will, however, be made in this
pProject to examine any serious fraction of the ACVC test suite
for conformance to the Ada PFD (or vice versal). Thus, it is
not within the scope of this project to study other than the
“basic" aspect of section 5.9 and point (1) of the same sections'
conformance part, and to study feasibility of its points (2-3-4).

(10) Proof Systems: a study might/will be made of the feasibility
of deriving (a) proof system(s) from the Ada FD. It is, however,
not a requirement that the currently planned Ada FD must be
gu.anntood to yield such (a) proof system(s).

(11) Mechanizable: the current Ada PD together with the LRM,
its correlation to the LRM, its LRM-independent annotation, and
various, not necessarily all-including, aspects of the underly-
ing semantics of its specification language(s) will be mecha-
nized. That is: a computerized tool set will be developed for
the support of the activities mentioned in section 5.11.

(12) Prototyping: it is not a requirement of this project that
the current Ada FD become the basis, or be shown feasible as a
basis, for the rapid prototype development of, say, an interpre-~
ter. -

But, along the lines of point (8) above, it is of interest to
the current project to ascertain the extent of correlation be-
tween the Ada FD and the NYU/Ada ED interpreter written in SETL
{30]. The current project does, however, not provide for a
study of this, but would, in case such a study was undertaken,
be most willing to co-operate, including striving to achieve
“correlation”.

p

. 1 4 ( .J" ";‘.,

el

A




"he

:a Orant
o, Formal
Definition
of Ada
“ (13) Correlation: it is a definite requirement that the de- f-f
veloped Ada FD indeed be strongly, clearly, transparently and .

Yy completely correlated to the LRM. &
&

. (14) Document Derivation: it is likewise (to point (13) above)

AN

b a definite requirement, imposed by the developers, themselves, :3

t‘ that the Ada FD be so expressed (presented) that it lends ek

itself nicely to the derivation of a number of reference

j’é' manuals for different levels (naive, novice, mature, experienced .}'

) and sophisticated) of programmers, implementors, scientists

v (formalists), etc. The current project, however, only calls r"

- for one such informal document to be systematically derived. -

) . . A

- (15) Maintability:s it is a definite requirement that the

[ current Ada FD be maintainable and as a derived requirement

: we find that point (11) then arises! R

¥ -

s

W ~:‘:.

X

L | Sy
u

, 2

N >

o .::'

" .‘

Q o
[ A

) -

b e

¢ '3

o >

L4

¢

‘ N

:. \:,

: =

o

M

' B=-170 B :.:.

", . |

N I A TN A N RO O TR S R B Y VL =




7. Conclusion v

== =
g
¢

We have performed cursory and enumerative, rather than deep and

3

x
analytical, studies of a number of classes of aspects of Ada, '

E each leading up to our enumerations, qualifying and quantifying e
Y

{ a number of requirements that we would wish the currently devel- AN

oping Ada FD to satisfy.

DACA '
-
ey

-
¥}

We submit this overview study to the international Ada community

o
t‘ for its careful and co-operative scrutiny. We invite serious ,.E’
o comments, and humbly expect both negative and positive critique. '

We declare ourselves most ready to seriously evaluate all :{.:
:'_j comments for their proper disposal (including inclusion in a :__.-
) possibly reworked final version of this report) referred to, in "':
" the abstract, as (II). ~lr.

hA

) t.:‘
¥ .~ Y
t f \
0

X o
) x‘Q
- ".‘
L) 'u'\
NN

3 )
; i
o )
N
w .\‘ 3
\ -_._-
-

- y.

5 3

-

. *‘.

2 34
@ 2
\ R
n P
N R
~ -
T \,i\ ;
vind
. 3-171 j

m oyt te et e B O P S R N
i S S S R, Cr N S L O DR SN UG (R RN OO AT AT AL A AT N W



ey MR ORRN e Y S0 R e R xR s Ly e AR e e

]
o
- L
]

Defimtion
of Ada

z
=

“he
Orart

LSS JSYINY LR ARAN LR

Y \ SAANAAL ¢ .V\L\S\\. AR A aleiele e N, N, XN S oy S Wy oy o, & Yy Yy N S vy AR
W A R £ % X1 ) ]



.
.
.
4
i
B
.,
.
s
.
.
¢
"
v
v
(3

B o
Dratt Lo
Oefirtion o
ot Ada - 61 =
r'\v-.
!'._J'
> 8. REFERENCES PN
K e ———— -i\:
A
[1] Requirements to/of a Pormal Definition of Ada a
. Dines Bjgrner S
Copenhagen, February, 1983. 4 pages o :
) ‘?ﬂ‘
' [2] What should be in a Formal Definition of Ada o
¢ R. Dewar, P. Kruchten, E. Schonberg -y
New York, 7 December, 1983, 6 pages :fj',:.::
NS
.~ 3] Demonstrating Conformance between Formal Definition :.."
of Ada and the ACVC test suite
. R. Dewar, P. Kruchten, E. Schonberg -.'::-:
_: New York, 6 December, 1983, 3 pages \.;5,
.:,.:-i
. . + {'
RS
(4] Requirements of a Definition of Ada e
Andrew D. McGettrick s
. Glasgow, no date, 4 pages NN
.5 :s_{s ’
N
(5] Role of the Formal Definition of Ada ) :-::::
Bernard Lang, . =
INRIA, no date, 10 pages g
z [6] The Users of a Formal Definition for Ada o,
Bernd Krieg-Brfickner S
2 April, 1983, 9 pages 3
R £7] Working Paper for Formal Definition Working Group ‘-
v R
Peter Wallis TR
Bath, no date, 1 page
- |.-_-*.'
- S
5 . .':.n'
: [8] Joint Ada~Europe/ADA-TEC Meeting INENE)
. Panel Discussion on the Pormal Definition of Ada S'\
y 18 March, 1982, 6 pages :
NN
: [9) The DDC Pormal Definition of Ada X
A e g
' Dines Bjgrner :i“'
. Copenhagen, no date, 7 pages ";".'E
ACAC,
Pl
oo
: e
£\$\
P
. B~-173 —
Cy.
« Mt
LS
-’:‘-..\A:-.,:-‘.'\ "9 :J' o~ ‘L" “» ‘h.-.":' " .'¢\‘_'..?..:~ ..... ',":‘ ------ '.'-_.;:. . e ..-"‘. ’-,- “;{ :f '.-.: * Tt .':-.J.-,"\'.‘.:',"\'-\:\N\'.\-.::\'.




(o &2,

The ]
Oraft A
Format .
Defimtion - 62 -

ot Aca .

N
. .
L [10] Ada Formal Definition - Position Statement )
Ole Oest
i Copenhagen, 14 April, 1983, 3 pages -
.
[11] Formal Definition of Ada, summary of Proposal -
Dines Bjdrner S;
Copenhagen, 10 May, 1983, 3 pages
5 {12] Proposal for a Co-operative European Effort for a Formal N
b Definition of Ada -
E Bernd Krieg-Briickner, Georg Winterstein 23
i Germany, May, 1983, 1l pages
g
; [13] On the Timing of a Formal Definition for "Ada" (TM) R
. : C. B. Jones o
3 pages X
' [14] Personal Views on the Feasibility, Problems and Timing “
of the Ada Formal Definiton Effort v
Joseph Stoy s
Great Britain, 2 pages
[15) How to complete the Ada Formal Definition (draft) =
Georg Winterstein EE
no date, 3 pages ) '
=
. (16] Note on A European VDM-based Formal Definition of Ada
Dines Bjgrner NG
Copenhagen, 18 June, 1982, 15 pages >
: [{17] An Abstract Systems Model of Ada Semantics Ei '
E. K. Blum
15 August, 1984 ) <
-

‘.." s

a

..........

o n‘_u-..‘.\,.\“.-. TR Coe RN I
TR SRRV DWMLECEY

o R T S )

-




, P 2 - vy oy -
DA SR DA gl gl i it T AN WU ¥ L WLW Sl Nl "l ! A A e e S W

™he -
Oratt - 6 3 - ‘..-_.
Formal [y
Oefirvition . e
of Aca

bd

4o
LA
i: [18] D. Luckham et al.: ANNA: Annotated Ada .‘.::
- X
) (19] J. Garwick ’ N
‘E LR BN f W
s
gé [20] Ada Compiler Validation Implementors' Guide \
Softech Inc., 1980 :.":;
y > u
5 [21] Towards a Formal Description of Ada o
D. Bjgrner, O. N. Oest .;,
i Springer Verlag Y
S Lecture Notes in Computer Science, vol. 98, 1980 La
»o . ..-':
~ [22) Formal Definition of the Ada Programming Language e
Preliminary Version for Public Review : f':j:‘
. l\.
,f.: Honeywell Inc., Cii Honeywell Bull and INIRA el
& November 1980 L
” ::f::.
3% [23] Reference Manual for the Ada Programming Language
ANSI/MIL-STD 181SA R
i U.S. Department of Defense, Washington D.C. =
January 1983 N
A
e | A
T:f {24] Rationale for the Design of the Ada Programming Language ::::
Draft for Editorial Review, Honeywell and Alsys ,L
" January 1984 3c
e r:“:-
e [25] A Formal .Definition of CHILL. A Supplement to the CCITT ::.
e Recommendation Z.200 e
Peter Haff, Dines Bjgrner A
o Dansk Datamatik Center, 1980 iy
' Whe
[26] CHILL Language Definition o
N . N‘.,-
oy CCITT Recommendation Z.200, 1984 e
~
;’- [(27] Revised Report on the Algorithmic Language ,::'
)
. ALGOL 60 ;'.:f-i
P. Naur '.:‘f'
&« S
i Comm. ACM, vol 6, No. 1, pp 1 ££, 1963 i
\‘F‘-
AN
o D
*Z NN
t.,- \'J,-.
A
! 3-175 T X
.!\..
_-\.-
G O O N 20 D A N N N L R R L L R R oY, L S L SRR L0000 SRR S L i




. * ' o .{

[4

Y. a
(N

a

. “he
Oratt - 64 -
Formai
Definition
ot Ada

(28]

£30]

[}

[32]

[33]

[34]

{351

(36]

SIS: A Compiler Generator System using Denotatiocnal
Semantic Definitions of Programming Language, Report
ISI/RR-83-112,

Information Sciences/Institute, California

An Executable Semantic Model for Ada, Ada/Ed
Interpreter

Ada Project

Courant Institute, N.Y.U.

Denotational Semantics
Joseph E. Stoy
MIT Press, 1977

A Structured Approach to Operational Semantics
G. D. Plotkin
University of Aarhus, 1981

On the Parameterized Algebraic Specification of
Concurrent Systems

E. Astesiano, G. F. Mascari, G. Reggio and M. Wirsing
TAPSOFT Conf., Berlin, March 1985, pp 342-358

Springer LNCS vol 185

Method and Notation for the Formal Definition of Pro-
gramming Languages

Peter Lucas et al.

IBM Laboratory, Vienna

TR 25.087, Revised 1 July 1970

Algebraic Semantics: Initial Semantics and Equations
H. Ehrig and B. Mahr.
Springer Verlag, EATCS Series, vol 5, 1985

The Axiomatic Basis of Computer Programming,
C. A. R. Hoare

m

L
o
“'Al

¥

gy

)

SO

g

e 2

.
»
-

s,

s » 0

18

-
~

-,
.

'
. A




’ T ) The o
Oratt 65 ‘.
- Definttion -
i of Ada

[37]) AnAxiomatic Definition of the Programming Language Pascal,
C.A.R.Hoare and N. Wirth:
Acta Informatica, vol. 2, pp 335-355, 1973

*»>
P L

T
ML A

“ ¥

[39]) Formalization in Program Development, * ‘_'-',.

": P. Naur -:‘
*Ju

n BIT, vol. 22, pp 437-453, 1982 K

= p
:: [40] Mathematics, the Loss of Certainty, ;.
Morris Kline by

. Oxford, University Press, 1982 by
- [42] cCalculus of Communication Systems, LT
-'_:" A.J. R. Milner -
- . "«-
Lecture Notes in Computer Science, vol. 94, Springer, 1980 ..

W , u
*' .
) Ly

o

(43]) Communicating s‘queniial Processes,

A
iny C. A. R. Hoare P}:
R Prentice Hall Intl., 1985 X
"-.
i [44] Processes and the Denotional Semantics of Concurrency
. Jaco de Bakker and Zuker ’.
. Information and Control 54, 70-120 (1982) 2
o t_;
s [(45] Natural Semantics on the Computer,
b G. Kahn et al. .
. INRIA internal report, 24 May 1985. \
':;jj [(46] A Design for a SEMANOL Specification for Ada, TRW Report, :‘
e 7 April 1980, and: A Multi-Processing Implementation-Ori- oY
ented Formal Definition of Ada in Semanol, ACM SIGPLAN i
:_ Symp. on the Ada Programming Language, Boston, Mass., .

SIGPLAN Notices, vol. 15, no. 11, Nov. 1980.
F. C. Belz, E. K. Blum, and D. M. Heimbigner

' B-177
»

et e A T T T Sy N Vi PTG RPN
S o B S T N s £ S G Ao, 0 S SRR VAR




[{47] Formal Development of Interpreters and Compilers, ch.9 of

Formal Specification and Software Development,
D. Bjprner [}

s
Prentice Hall International, 1982. .




—‘ z A-l l.- .
ﬁ Definition
-~
i v
o ;:.
Appendix A: MNEMONICS W
" i :
Once scientific ideas reach the market place their abstract ;::
‘i'.-'-: nature gets instantiated, and commerical abbrevations result. N
v Even in Academica we see such an unfortunate trend (e.g. oY,
- ACT/ONE, ANNA, CCS, Cnet, CSP, DIANA, DSL, LARCH, LCS, Meta- -
:::f IV, ML, OBJ, SIS, SMoLCS, and SOS). Bureaucracies foster "\.
“mnemoniconiae” (i.e. ANSI, BSI, CEC, CHILL, CNR, DoD, ECMA, o
= 1EI, LCB, LMC, LRM, MAP, MIL-STD, and WG). To add e
> o
= insult to injury we add our own: CRAI, DDC, FD, and MTLI
.. r_:.
Abbrevations \ '
~ -
.ACT/ONE b
;:'; ACVC Ada Compiler Validation Capability N
i ADT Abstract Data Type (usually algebraically specified). ~
ANNA ANNotated Ada T
;, (D. Luckham et al.). :::
- Y
A
' ANSI American National Standards Institute. bR
. f.‘t‘
ASL Algebraic Specification Language ','_
'.:}j (D. Sanella and M. Wirsing). :
ZE:: BNF Backus Normal Form context free grammar. :j:::
o BSI1 British Standards Institute. :::
o N
L]
CCITT Comité Consultatif International de Telegraphie et “
- Telephonie. 3; :
t". * !
”
o cCs Calculus of Communication Systems o
i (R. Milner).
f.-j' CEC The Commission of the Furopean Communities. ;:?'.:'
X

.

) \

PR



R B e 4 B S St o Ml Sndgh

¥ M The
[ Dratt
Formai
Defimition
- of Ada

CHILL CCITT High Level Language. .I:
N o
. CLEAR (not a mnemonic, just a funny) -l
: Name of a «calculus for combining algebraically ;j
specified ADTs.
(R. Burstall and J. A. Goguen). :ﬁ
: Cnet Campus net (Italian CNR project). -c
CNR Consiglio Nazionale della Ricerche )
> (Italian Council for National Research). :3
i CRAI Consorzio per Ricerca e le Applicazioni de Informatica. .
Y. CSP Communicating Sequential Processes
- A
2 (C.A.R. Hoare). s
-ﬂ: \‘
v DDC Dansk Datamatik Center. i
DIANA Descriptive Intermediate Attributed Notation for Ada )
3
DoD (US) Department of Defense. *
.|
DSL Denotational Semantic Language -
- (P.D. Mosses).
N S:
" D-SMolLCS Denotational SMolLCS. -
: <
9 ECMA European Computer Manufacturers Association. e
. FD Formal Definition. ;§
-
. IEL Istituto di Elaborazione della Informazione. S
: ~
: 1s0 International Standards Organisation. o
L) R L
= LARCH (Not a mnemonic, but a) Name for an algebraic ii !
; (semantics) specification language (family) o
. ) (J. Guttag and J. Horning). j
‘ J
; !! q
p-130 - ;

"g - e -.’- ap .(-‘-.\~_ B BN _\- .- ..:_..'_. '.-.;‘.‘;'.‘\‘...;...;‘-:;_ .-._ .;_. oS ‘_. '..-.:. ER : > _:\-‘._....-..‘;.. ‘...‘.-"_..-._- -_: _... ;'.\‘-\("‘l
A B 0 LY B W e A A W o N 4 W \ vl 48 N . N, A




9 g g Baa e e e at at Aty 3te 4"

Y'n‘
Orant

: z Faml
DeAnition
E : o' Ad

te
2
M

: L N

‘ P LCB
- LCF
- 1CS
'
) LES
éj

. LMC
._\-
3': LRM
T MAP
(w’
; MENTOR
'i Meta-1V
.
*.l
~
MIL-STD

NYU
-:: ML
’
3
T MTL
:‘\
a OoBJ
[ ]
Ta SETL
o
. s1s
8,
~

.............
CIPary ' .

A{»J...‘LL PRI TR,

ty 3 o at . vap vog N gt Yol Y N ("

Language Control Board.

Logic for Computable Functions
(R. Milner).

Labelled Control Systems.
Labelled Event Systems.
Language Maintenance Committee.
Language Reference Manual.

Multi-Annual Programme in the field of data proces-
sing (of the CEC).

(Not really a mnemonic:) Meta-Language number four
(rhymes with: Metaphor)

(H. Bekié, D. Bjgrner, C.B. Jones, P. Lucas).
MILitary STandarD.

New York University.

Meta Language (as in Edinburgh/LCF)
{R. Milner).

Methods, Techniques, Languages (Ada FD)
Algebraic semantics OBJect specification language.
SET (Programming) Language (NYU).

Semantics Implementation System

. *. 'J‘_"..:'_ K

3
P

.
.

" s T e W ..'4.

%

AR AL

....
TR AN
< el

»
-

A

S



XX

Orant -

z : A .
Definition
of Ada

AL
¥

)-"
N w
ot
"\‘ _
™ (P.D. Mosses). ]
» .
S
5
AN .
":“ e
;:
S SMOLCS Structured, Monitored Linear Concurrent Systems
(E. Astesiano). !’?_
A -
- sos Structural Operational Semantics .
- (G.D. Plotkin). w
o _.
N £
e .
o s
v -
R
o

~ 3
. ¢
- \J
n,
5
=
"ot S
%
:" )
'~
o4
= "~
[ _.o.
i Lo
.
.:' ro
Y]

o
o

Oy |

- t’
. e
Q8
L% -
oy
'
) -
L3 -
2 <
- =
)
.‘ .
=
) .
” p-182
‘
i. .

B R I T R W S E L A S
n{“ a)\". -..'\ l‘. a“ \ \"\“.'.._\., i‘.\.‘

R N A R SR
» * A~ PN et , -
5~:A':L-:\\_&\' Com'a Joto s 0 o PN

#




DAL R AR R af SLady S a ot

one
ition
E “‘f8le of the Ada Formal Definition: Terminology -

oo
oA

Appendix B: TERMINOLOGY

In any project, one should start out by carefully establishing

and defining the terminology, and throughout the project one -
should critically maintain and adhere to this terminology. by
The terms name the important concepts. Hence, the terminology e,
should also be part of the product.

i
¥

I
AR

The present lcctibn outlines only a Qery embryonic form of a

o terminology. It is part of a continuing activity of se-
- parately establishing a 1arger. more comprehensive, termi- |
nology document. ﬁj
-
A <
Yy TERMS Ny
-
- Abstract Syntax N
. L4
Definition of a class of objects which emphasizes their : R
" contents and structural relationship. 1In contrast to a P
E% concrete syntax an abstract syntax ignores the choice of =
lexical elements and their ordering in sentences of a . .
language - more specifically a set of domain equations or a o
- set of predicates, which define classes of abstract object. X
e ~
Assertional (Pre-Post Specification) Language - -
i An assertional specification language is one in which functions 3
and operations may be defined by predicates over their arguments -
~ and results. ?
S -
-~ (In general, this technique defines a relation, and it is :
understood that such a relation is satisfied by any sub-relation
with the same domain, in particular by a function with the same )
Dy domain which is a sub-relation). &
Combinator ﬁ
- Ot
) A combinator is a syntactic rule which, when applied to a R
(usually fixed) number of formal documents, produces a -
- . resulting formal document. (Typically, a combinator is one .
. or more symbols with rules for positioning input formal "
A documents in relation to its symbol(s) to form a new document 1
with a defined semantics.) Since the result of applying a v,
“a ) combinator is a formal document, there has to be a rule which {
W gives the semantics of the resulting document. v
Concrete Syntax .,
[ -
e A syntax which includes the definition of lexical elements f
’ and their ordering. -4
'i ~]
’l
<. "
l\ °
™ "
<
! B-133 i

R I R A YAl N T T et et e T e e e T e e et e e T e e e Pt e T AN e e et s R .‘ Ve e s
. ".'\.\"-" RS S A O PO T CR i S OO R TR 's;f. Ny '\ ~ Y \.'\ NN ‘\"- \"\ X SRR

(NI
o AR



h 1t ) v ’ o LR, NN v U I\ Y gt a4 L A A0S 4 . 3 faldutp

o

i '
Definition ) |
v °‘R¥le of the Ada Formal Definition: Terminology
R P
y
&) V.
e Constructive Specification
%, -
" --game as model-oriented specification. !!
b
o :
Correctness !
,, - N
o The concept of correctness only has meaning in a context of
e a formal method which requires the generation of at least one -
T pair of formal documents, A and B, so that A is considered a
R to be a prescription for the production of B. B is then :
"W correct if it satisfies its prescription A. Typically, there
o will be several series of pairs (A,B), (B,C), (C,D). etc. _
2, -
Data e
A .
.- A collection of objects, and operations involving these (and 4
- possibly other) -objects.
.\ -
™ Decomposition ]
’5 A transformation from A to B so that there are functions/ )
13 operations in A the behaviour of which is specified by a e
- composition of functions/operations in B. e
5 .
' Deductive Specification !
) -=-game as property oriented specification.
2 Design -
The supplier's statement of how the specification will be -
o implemented. Such statements may exist at various levels of e
- detail.
N In the context of a formal method, a design is a transformation -

of a specification This transformation embodies decisions as -
to how the specification will be implemented.

' % &

Document

Any identifiable, finite piece of recorded information produced
J during a software development. A document may be expressed

in a formal language or not, and may be electronically recorded
7 or recorded by other means. (Thus, a program, a specification, o
- and doodle are all documents if recorded and identifiable ~
: during a software development). o
Ca
: <




B W W W N T T W WV RN I I Y P AP A A « Ve Ui . Loy P YAl A A fak. Sud fnl
e -
3= B 3

romal
7idi¥le of the Ada Formal Definition: Terminology

o K

Enrichment

A transformation which includes the addition of functionality;
in algebraic or denotational terms this could entail the addition
of operations.

B

EZ Fault Tolerance
Software is fault tolerant if it behaves correctly despite
*? spurious failures in its input.
>
S Formal Development
Eﬁ A development in which each generation of a transformation

or implementation is accompanied by a formal proof of its
" correctness.

Formal (Document)

'5 A document expressed in a formal language.
ts Formal (Language)
3

Having a precise semantics and syntax. (The syntax may be abstract).

‘ Formal Method

- A (software development) method whose guidelines are forma-
Eg lized and which requires the production of specifications

" in a formal language, in addition to the implementation (1l).

Formal Proof

-

A procf in which each step is the application of an axiom of

{ the inferential system or a formally proved theorem. The
% result of each step is expressed in a formal language.

5; Functional Specification

-~

A functional specification is one which describes and prescribes
- the behaviour of its acceptable implementations in the follow-
ing restricted sense:

{(a) The only behaviour described is properties of the infor-

3 mation content of the information input to and output from :i57
? the implementation. No reference can be made to any o ]
‘ other information, such as the passage of time, the internal %ﬁ‘
representation in the implementation, etec. N

t ¢
b N
e
s A
:?i
B-185 - -

\---ﬁ

R o S N S LN CrA P L R e P A N A T e e N
Vs B \ gl




K zazn B-4 &
Formai .
Defintion

‘, RBle of the Ada Formal Definition: Terminology

w3 N

N N

3 (b) The only properties which are described are those which

2 can be mathematically described or modelled, ]

Dy

(c) The claim that the implementation possesses these
properties must be subject to refutation.

.
oafal

‘of o
AN

.o *
E A

Generic Specification

v A
Iy A formal document which defines a class of specifications, (A -
o parameterised specification is an example).
e )
. K
Genericity e
N Genericity is a general principle comprising an attribute »
. of a document, process, method or other concept. It is the o
o attribute of requiring a small fixed-size change to the
v document, process, etc., in order to achive a change in .
- applicability of the doucment, process, etc. i;
’i' Implementation -
- An executable specification which fulfils all the requirements.
Interpretation/$S lic Execution !
,; The interpretation or symbolic execution of a formal specifi- )
N cation or an abstract design consists of a mechanically Ay
) automated process of displaying properites of its implementations. -
, Loose Specification x
- --same as Generic Specification. )
-; Maintainability -
, Software is maintainable if the insertion of a change can be ”
. unambiguously and uniquely located through specification :}
- design, and implementation.
X 3
< Method -

X A method is a set of guidelines or rules for how to carry -
*y : out a process (e.g. software development). Typically, the .
A guidelines refer to specific tools which are to be applied y
> using certain techniqued and in a prescribed order.

» - » , ""-.F A'. '-- 't . e T
M . . - ~ - .
DAL A Y i R P P




e
Orart

Formai

Defirution B=5
ot Ada

R8le of the Ada Formal Definition: Terminology

APl

Methodology

The science of methods. It is here used to denote a framework
for a class or set of such methods.

=

Model Oriented Specifications

A specification (or design) which denoted a (theory of)
mathematical model(s), i.e. an object, or a class of objects

. S

o
guaranteed to exist.

:~ (In a model oriented specification language the specification

> language date types are typically definable in the following
way. There are a fixed finite number of basic types supplied

. in the language. Their definitions may be axiomatic in style.

}; Further data types may then be defined by applying type com-

~ binators of which there is a fixed repertoire in the language,
in a possibly recursive manner.)

h.

Modular(ised) Sgccifiﬁation

“ A specificaition is modular(ised) if it is expressed as the
composition of specifications.

i Non-functional Specification .

) A specification which prescribes that its implementations
" shall possess a set of properites which do not comprise a
N functional specification (q.v.)

Parameterised Specification

Consider a specification combinator to the following form.

] The combinator is a formal document containing place~holders.
L The formal document becomes a specification if and only if

L; the place-holders are associated with and semantically repre-
sent other specifications. Such a specification combinator
is called a parameterised specification.

Performance

Performance is a quality of software which is not expressible

{u

-~ within its functional specifications. The performance of
software is the economy with which it exercises the resources

0 of its environment. (Such resources are typically computer

_3 storage and c.p.u. time but, may be extended to include

resources of a wider environment, such as fuel consumption of
a software controlled industrial process.)

---------------
.........

......
-



o, e

Dratt B=-6 ="
D'.Mmon .
G “R81e of the Ada Formal Definition: Terminology
a2, ‘s
k) " f\
5\ )
.f Programming
(X .
The activities involved in requirements definition, speci- w,
N fication, design and implementation. -
(‘-
'I o]

A
323

Property Oriented Specifiaction

A specification is property oriented if it defines the
external characterisitcs only.

S

A

o

Y

e A property oriented specification language is one which

S permits the definition of data types by defining new functions -
o in the sorts of which the data type to be defined occurs, i
Y and then listing properties of the new functions. This in -

general defines a class of data types, and there will be
defined an "interpretation” which will identify (to within -
isomorphism) a unique data type from this class. An alternative -

. to the last provision is that of a loose interparation in -
which the data type is not further identitied. The specification .
- which reusults is then parameterised, and will become a Y
plle proper specification when an instatiation of the data type is ‘
< given which define it uniquely (to within isormorphism).
..‘I \v
o :ﬁ
}5 Properiety, Proper
. i
-y Propriety (adjective: proper) is the attribute of software =
%; of fulfilling the functional and non-functional (q.v.
s expectations of its users. (If the requirements documents -5
1l have been adequately formulated, they should be caputured therein.) X
[ ..
La
Prototype -
:: An executable model that conforms to a subset, or is a
. projection of the requirements of the specification.
)
Prototyping
LN The act of constructing a prototype. Typically involved ,ﬁ;
;} transliterating a specification or an abstract design into -
! some high level executable code. i
4 N
~ Refinement -
¢, A structure preserving decomposition of specification A to (a Cj
.i possibly abstract) design B, or, similarly, from design B to W
\ design C, etc.
W o
]
y
. .
h Y >
) <.
W) e
L)
»
|
A

........ -

R P .."-‘~"q f-‘ ; »

....................

“» ,"-ul“*-._ Y .. -(.v'. -‘..\..:...-.’- TR . o {‘-J\I“I,.I_'. RNy BRI o ~' . 1




-2

AN

&

-

y M 3

.

v
v

r v "
£

o " &
St

"
., v

.
o

)
S

Lty e hel-

"re

Oran 7
Definition B~
of Ada

R8le of the Ada Formal Definition: Terminology

Keliability

Software is reliable if it is both correct and also clearly
rejects input explicity excluded from is specification.

Requirements

The customer's statement of his needs.

Requirements Analysis

An analysis of the customer's needs, cf. contractual model.

Rigorous Development

A .development in which each generation of a transformation,
refinement, or enrichment gives rise to a proof obligation,
which can be accompanied by a rigorous proof.

Rigorous Proof
A rigorous proof is a demonstration designed to convince

others (that a formal proof could be generated) of the truth
of some assertion.

Robustness
Software is robust if changes to it do not hamper its quality,

i.e. its conformance to its functional and non-functional
specifications (q.v.).

Satisfy

A formal specification B satisfies a formal specification A
if B exhibits all the behaviour specified by A.

Software Engineering

The total support process of producing and delivering implemen-
tations and maintaining them, starting from requirements.

Specification

The supplier's description of the functional behaviour of
the implementation and the process of producing it.

2 el e A T T AT A AT AT A
"-'N ‘.u .’ N ) 2l ¢ 8 -

S
>

CAAAAR
aTata,
XY,

=

7

N N T T
> 7 l’sl‘

ﬁ-((“

4

- e -
S
-
!\l'..
o n

[APSPAAY
a .l .' .'

-

ok

-

LA

s

™.
y
.

39 "
S

;‘4

»

e et e
F:' .v~ ':'.al'.v g '.

,-
A

-

..,,-,.
oy J /',
P

|




AN A,

Ay

ey

[N

XAGERA

3

Pa, S N

- o
e 8 a2 2 4

P Y

4

P N N

LRV S A o e et s B e R i Ea S i

The

Dratt " B-8 -'i.-l
ition
gﬂ&&e of the Ada Formal Definition: Terminology

Specification Co sition

The process or result of transitively applying a number of ii
combinators to a number of specifications to produce a '
resulting specification.
%
Specification Language &
A language in which specifications can be expressed. -
Specialization of Specifications
The process of transformning a generic specification into a =
formal document whih defines a sub-class (possibly one)
of specifications.
Support System ..
An integrated collection of tools supporting some particular ii
kind of activity in the software field. The activity may be
broad or narrow. b
<
Symbolic Execution
-=-game as interpretation. !!
Syntax Si
A definition (usually formal) of the allowable sentences of ‘
a language. . |
..‘:
Systematic
A systematic method (as oppoesd to a rigorous or formal one) Sﬂ
is one comprisinfg rules and/or guidelines for the ordered )
production of (mostly informal) documents within a development
process. A systematic development is one carried out according
to the rules and/or guidelines of a systematic method.
Testing (1) =
-l

The systematic and organized search for a counter-example to
the claim that a specification/design/implementation is correct.

B

a’e o
..I'l’-




[y )

.....

- vy -, fla 2% - ¥ v - - ;‘.' ™ J 2l ahe a8 -

g;:n B-9
Formai
¥3&éfe of the Ada Formal Definition. Terminology

Testing (2)

The (possibly partial) execution of a specification in order
to demonstrate that it fulfils some non-functional requirements
(and@ hence to demonstrate its propriety).

Tool

An object that can be used in the process of developing (and
maintaining) software systems. Tools include both computerized
as well as non-computerized (manual) tools.

Transformation

The process or result of generation a formal specification B

from a given formal specification A such that B satisfies A,
where the internal structure of B is normally not a decomposition
of that of A. The term is often used in the context of a
machine-generated or machine-assisted transformation.

Wherever no specific qualification is made, transformation
will include the concepts of refinement and enrichment.

User

Someone who uses Ada FD.

Validation

A process within the contractual view of software development
which improves confidence in the correctness of a specification,
design, or implementation, or the claim that a specification,
etc. fulfils the requirements. This could be the production

of a proof in the former case.

Verification
A proof that a transformation, enrichment, or refinement is correct.

Or, alternatively: A process within the contractual view of
software development which improves confidence in the well-
formedness and non-degeneracy of a specification/design/im-
plementation. This could be the production of a proof.

e T et -
a e A A% LR o
CY LI A AP e L S
USRS ST I TN L AN
LYWWV BRSO A S L

AT
:‘.ﬁ"t‘vﬂ

Ly
v’

‘u_‘r‘
2t

A

o
I ) .‘-

¥
v




) L. ~ v

-.- h. .-w.c-...a\. ‘- " ln. .4 —\.. .-.... e ...d ’ ...._..“.. _n..«‘ w.o o m! .. J.. ... N -...... ... ot ..... o f.-.rum - AN .(-. el

B--192

Formai
Defirition
of Ada

The
Dratt

.‘ .‘ .

A Bad et

.

.r‘..p...rsm.mm.\.\....... 7. - p . 0 ..... A .‘.. NN SEE TN »y ...m\ Iy, e e L A N NERP 7L T,



DISTRIBUTION LIST OF M-135

Bernard Abrams

Grumman Aerospace Corporation

Mail Station 001-31T
Bethpage, NY 11714
(516) 575-9487

Omar Ahmed
Verdix Corporation

7655 01d Springhouse Road

McLean, VA 22102
(703) 448-1980

Eric R. Anderson

TRW DSG (R2/1134)

One Space Park

Redondo Beach, CA 90278
(213) 535-5776

Dr. Thomas C. Antognini
MITRE Corporation
Mailstop B330
Burlington Road
Bedford, MA 01730

(617) 271-7294

Charles Applebaunm

1058 Boyurgogne

Bowling Green, OH 43402
(419) 352-0777

Krzystof Apt

Thomas J. Watson Research Center

P. 0. Box 218
88~K01 Route 134

Yorktown Heights, NY 10598

(914) 945-2923

Terry Arnold

Merdan Group

P.0. Box 17098

San Diego, CA 92117

Ted Baker

Department of Computer Science
Florida State University

Tallahassee, FL 32306
(904) 644-2296

e .
2 o Qe 3

L

.......

e SN e e e e T .
MW, TR, YA VR AN

Ll
.. b ol 3 2

ABRAMS@USC-ECLB

TRWRB! TRWSPP! ERA@BERKELEY

SECURITY!TCA@GMITRE-BEDFORD or

TCVB@MITRE-BEDFORD

CHAGMITRE-BEDFORD

MERDAN@ISI




L ad ¥ , , . .' X - - v - » B - - - ¥ ol . o v - - -

p ‘o".t‘;.“-

%
3 - a
‘3 David Elliot Bell DBELL@MIT-MULTICS .
e Trusted Information Systems, Inc. -
¥, 3060 Washington Road :
A Glenwood, MD 21738 —_
. (301) 854-5889 !!
N o,
- Dan Berry
- 3531G Boelter Hall A
o Computer Science Department o
w School of Eng. and Appl. Science
Los Angeles, CA 90024 -
d (213) 825-2971 -
b Edward K. Blum BLUM@ECLB i
> Mathematics Department 0
University of Southern California -~
Los Angelos, CA 90089
- (213) 743-250¢4 -
. N
2 * Alton L. Brintzenhoff SCI-ADAQUSC-ISI
Y _ SYSCON Corporation -
o 3990 Sherman Street ' gi
v San Diego, CA 92110
. (619) 296-0085
- * Dr., Dianne Britton HELBIG@ISI
- RCA Adv. Tech. Labs
i ATL Building =
Moorestown Corporate Center : !!
Moorestown, NJ 08057
(609) 866-6654 or (609) 924-3253 ;{
* Dr. R. Leonard Brown BROWN@AEROSPACE >
M1/112
- The Aerospace Corporation !5
L P. 0. Box 92957 .
- Los Angeles, CA 90009
> (213) 615-4335 ‘o

L4
e

Richard Chan RCHAN@USC-ECL (bad)
. Hughes Aircraft Co.
K P. 0. Box 33 w
FU-618/P115
Fullerton, CA 92634

[ ..' -’ .-"

(714) 732-7659 o
-
e * Norman Cohen NCOHENQ@RECLB
: SofTech, Inc. o
e, 705 Masons Mill Business Park o
) 1800 Byberry Road
Huntingdon Valley, PA 19006 :
(215) 947-8880 é
;;:
N %
*
u

.y , h
!
.

¥

e L A e



oty

'.J:.

XA
Paul M. Cohen PCOHENQECLB e
Ada Joint Program Office k;
OUSDRE/R&AT \F)
Pentagon Room 3D139 (Fern Street) N
Washington, DC 20301-3081 ° AL
(202) 694-0211 o

w X
Richard M. Cohen COHEN@UTEXAS-20 B
Institute for Computing Science et
2100 Main Bldg. “}i
University of Texas K92

Austin, Texas 78712
(512) 471-1901

-
»
£y
=
-

) Michael D. Colgate FREEHAN@FORD-COS 1 gw-
» Ford Aerospace & Comm. Corp. vy
& 10440 State Highway 83 W

Colorado Springs, Colprado 80908

e W

* Mark R. Cornwell CORNWELL@NRL-CSS CQ;
Code 7590 O
Naval Research Lab 52{
Washington, D.C. 20375 %:!
(202) 767-3365 :
Major Terry Courtwright COURT@MITRE A
WIS/JPMO/ADT o2
7726 01d Springhouse Road Iy
Washington, DC 20330-6600 It
(202) 285-5056

g

* Dan Craigen CHMP.CRAIGEN@GUTEXAS-20 o
c/o I. P, Sharp Associates }QL
265 Carling Avenue N
Suite 600 ot
Ottawa, Ontario, Canada K1S 2El -
(613) 236-9942 .;;

. (NS
Steve Crocker, M1~101 CROCKER@AEROSPACE o
The Aerospace Corporation e
P.O. Box 92957 o
Los Angeles, CA 92957
(213) 648~-6991 N
'_.:\_
John J. Daly WCOXTON@USADHQ2 :ﬁﬁ
USAISSAA Kalg
2461 Eisenhower Avenue }
Alexandria, VA 22331-0700
N
=)
N
N
TN

. ...-.‘(‘ 5.. (..' .-. .‘. .." .." \-'\....-....‘.‘ﬂ-..‘-. .'\;. {\-‘—;.-.4'-..-- -..~ -.|<‘.-". - - -~ ¢ - - hd " ) -- .. St RS s .- -.
P I8 SO AT I IO SN NP I ITIEIR DI T A A R S A SIS S AR S SRS TN

aBeCae A




AR

A
-

]

e ." ;'.F o

%

P

A
2a"a% A

£

%

Dh WP W 2 o

e,

A

-~

Tom Dee

Boeing Commercial Airplane Co.
P. 0. Box 3707

MS 77-21

~ Seattle, WA 98124

(206) 237-0194

Jeff Facemire

Texas Instruments
P.0. Box 801

M/S 8007

2501 West University
McKinney, TX 75069
(214) 952-2137

John C. Faust
RADC/COTC

-Griffiss AFB, NY 13441

(315) 330-3241

Gerry Fisher

IBM Research 35-162

P. 0. Box 218

Yorktown Heights, NY 10598
(914) 945-1677

Roy S. Freedman
Hazeltine Corporation
Greenlawn, NY 11740
(516) 261-7000

James W. Freeman

Ford Aerospace & Comm. Corp.
Mailstop 15A

10440 State Highway 83
Colorado Springs, CO 80908
(303) 594-1536

Mark Gerhardt
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7839

Chuck Gerson

Boeing Aerospace Co.
Mailstop 8H-56

P.0. Box 3999
Seattle, WA 98124

FACEMIREZTI-EG@CSNET-RELAY

FAUST@RADC-MULTICS

FREEDMAN@ECLB

MSG@MITRE-BEDFORD

aE

-

Lo

’

[ ]
PRl

. N

e PR [ASRY

v B2

KA




leﬂ(-'-_\.n.» LR o e e W N T W . L o A N oM g r Al s VT Ty

i Helen Gill .
MITRE '.
& Mailstop W&459 .
: 1820 Dolly Madison Boulevard W,
McLean, Virginia 22102 ool
' (703) 883-7980 >
'y -
Kathleen A. Gilroy E::\
. Software Prod. Solutions, Inc. e
Ef- P. O, Box 361697 »“n‘
: Melbourne, FL 32936 N
’:j Virgil Gligor i~
Department of Electrical Engineering ;-{'
. University of Maryland X
L College Park, Maryland 20742 O
» (301) 454-8846 eue
" Donald I. Good GOOD@UTEXAS~20 _
“ 2100 Main Building g
- The University of Texas at Austin N
' Austin, TX 78712 ‘_
g (512) 471-1901 | Y
Ronald A. Gove GOVE@MIT-MULTICS
) Booz, Allen & Hamilton N
0y 4330 East West Highway S
Bethesda, MD 20814 e
i (301) 951-4624
) * Inara Gravitis GRAVITISQECLB o
- SAIC
e 1710 Goodridge Drive -
W McLean, VA 22202 . wl
(703) 734-4096 or (202) 697-3749 ' B
r * Col. Joseph S. Greene, Jr. JGREENERUSC-ISI NN
DoD Computer Security Center: . ;’:
- 9800 Savage Road "
o Fort Meade, MD 20755-6000 P
o (301) 859-6818 -
g David Gries GRIES@CORNELL R
(N Dept. of Computer Science s
Cornell University R
H Ithaca, NY 14853 '.-:.::
- (607) 256-4052 ‘
NS
N
e
.
t"

--------
.t

h\ .".(".'d _’- V,.‘\_\.b L » - o
LA OIS T MU SO ARG




David Guaspari

Odyssey Research Associates
408 East State Street
Ithaca, NY 14850

(607) 277-2020

J., Daniel Halpern

SYTEK Corp.

1225 Charleston Road
Mountain View, CA 94043
(415) 966-7300

Kurt W. Hansen

Dansk Datamatik Center
LuudToftevej 1C

DK2800 Lyngby

Denmark

PHONE: ++ 45 2 872622

Scott Hansohn

Honeywell Secure Comp. Tech.
Suite 130

2855 Anthony Lane South

St. Anthony, MN 55418

(612) 379-6434

Larry Hatch

DoD Computer Security Center
9800 Savage Road

Fort lYeade, MD 20755-6000
(301) 859-6790

Linn Hatch

IBM

17100 Frederick Heights
Gaithersburg, MD 20879

Brian E. Holland

DoDCSC, C3

9800 Savage Road

Fort Meade, MD 20755-6000
(301) 859-6968

Ray Hookway

Center

Dept. of Computer Eng. & Science

Case Institute of Technology

Case Western Reserve University

Cleveland, OH 44106
(216) 368-2800

A3
-

RPLATEKQECLB

SYTEK@SRI-UNIX or
MENLO70!SYTEK! DAN@BERKELEY

KHANSEN@ECLB

HANSOHN@HI-MULTICS

HATCH@TYCHO

BRIAN@TYCHO

HOOKWAYZCASEQCSNET-RELAY

.............

.-
.........




§ 5
} o
‘ Paul Hubbard HOOKWAYZCASE@CSNET-RELAY T
gE{ Dept. of Computer Eng. & Science )
s Case Institute of Technology : Y
‘ Case Western Reserve University ool
Cleveland, OH 44106 st
E (216) 368-2800

. Jim Huitema ' g;
Fc National Security Agency 'b’i
“ R831 oy
Ft., Meade, MD 20755 "
F! (301) 859-6921 . .
Larry A. Johnson LJOHNSON@MIT-MULTICS tﬁ

;. GTE s
F 77 "A" Street o
) Needham, MA 02194 ot
. (617) 449-2000 ext. 3248 _
3
*¢ * Juern Juergens JJURGENS@ECLB i
SofTech, Inc. e

o~ 460 Totten Pond Road o
e Waltham, MA 02254 &
- (617) 890-6900 ext. 316 ,

. '
o Matt Kaufmann - CMP.BARCRUTEXAS-20 s
= Burroughs Corp. | PR
Austin Research Center ;\

12201 Technology Blvd.,
Austin, TX 78727
(512) 258-2495

L2

[

Prof. Richard A. Kemmerer DICKR@UCLA-CS

Computer Science Department

University of California

Santa Barbara, CA 93106 oy
(805) 961-4232 "l

“
N

AT,
LY

;& John C. Knight UVACS!JCK@SEISMO Q:
Department of Computer Science o
Thornton Hall =
- University of Virginia

x; Charlottesville, VA 22903
(804) 924-1030

2 Major Al Kopp AKOPPQECLB .
- Ada Joint Program Office

OUSDRE/R&AT —
i: Pentagon Room 3D139 (Fern Street) b
- Washington, DC 20301-3081 ;&

(202) 694-0211




"4
&
», A
s
o * Thomas M. Kraly
b IBM Federal Systems Division o~
3§ Software Eng. & Tech. 4D08 é&
) 6600 Rockledge Drive
ot Bethesda, MD 20817 B
) (301) 493-1449 3
§ \
\ Dr. Jack Kramer KRAMER@ECLB .
- Institute for Defense Analyses )
k. Computer & Software Eng. Div. Dy
) Alexandria, VA 22311
Y (703) 845-2263 :E
> >
o Eduardo Krell
o 3804 Boelter Hall Y
N ucLa &
Los Angeles, CA 90024
y Kathy Kucheravy v
.+ DoD Computer Security Center *
~ 9800 Savage Road
N Ft. Meade, MD 20755 o
f Dr. Kenneth Kung KKUNGRUSC-ECLA
*j Hughes Aircraft Company pe
X Ground Systems Group =
b M. S. 618/Q315 ' '
h P. 0. Box 3310 N
Fullerton, CA 92634 b
x (714) 732-0262 =
"
X * Carl Landwehr LANDWEHR@NRL-CSS =
o Code 7593 N
- Naval Research Laboratory
Washington, DC 20375-5000 -
. (202) 767-3381 o
) * Mike Lake o MLAKE@ECLB .
- Institute for Defense Analyses o
b Computer & Software Eng. Div. ol
1801 N. Beauregard Division
: Alexandria, VA 22311 "
S (703) 845-2519 N
A
» Randall E. Leonard -4
" Army Sys. Software Support Command E-ﬂ
ATTN: ASB-QAA
Fort Belvoir, VA 22060 "
<
", )
[}
' hes
[~
.
* ".‘
o ..;" }

<418

A 8 a0

........... el e e e

. e et T e R PR T e Y S T e T e e e e R ST
ENTN A S AT PA e '-"..( '."'I:’.' R R %) -".'\."(F $J‘1~ w (."‘ - ..y‘. -‘,\v'. A v'..\' <, .‘\w'. - . L "._"' (u\’-.(-.' "'.\' A




7 K

oK

Fa

x-T ®
PO

e

A

KAX

[ o
8
AS
[ 9

Nancy Leveson

ICS Department

University of California

Irvine, CA 92717

(714) 548-7525 or (714) 856-5517

Dr. Timothy E. Lindquist
Computer Science Department
Arizona State University
Tempe, AZ 85287

(602) 965-2783

Steven Litvintchouk
Mail Stop Al80T
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7753

David Luckham

Stanford University

Computer Systems Lab, ERL 456
Stanford, CA 94305

(415) 497-1242

"Dr. Glenn MacEwen

Computing and Information Science
Goodwin Hall

Queens University

Kingston, Ontario

K7L 3N6

(613) 547-2915 or (613) 548-4355

Ann Marmor-Squires

TRW

Defense Systems Group
2751 Prosperity Avenue
Fairfax, VA 22031
(703) 876-8170

Eric Marshall

System Development Corporation
P.0. Box 517

Paoli, PA 19301

(215) 648-7223

Adrian R. D. Mathias
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850

(607) 277-2020

LINDQUISZASU.CSNET@CSNET-RELAY

SDL@MITRE-BEDFORD

LUCKHAM@SAIL

MARMOR@ISI

PAYTON@BBNG

RPLATEK@ECLB



."~ .-
2 S
-
,5 * Terry Mayfield TMAYFIELD@ECLB v .
iy Institute for Defense Analyses o
:; Computer & Software Division e
N 1801 N. Beauregard Street ]
Alexandria, VA 22311 7]
5§'5, (703) 845-2479 N
L
5 * John McHugh MCHUGH@UTEXAS-20 5
0 Research Triangle Institute §3
M Box 12194 ,
. Research Triangle Park, NC 27709 -
’$ (919) 541-7327 e
s
N Rudolf W. Meijer RMEIJER@USC-ECLB .
N Commission of the European Communities y
== Info. Tech. and Telecomm. Task Force <
A25 9/6A
< Rue de la Loi 200 o
o B~1049 Brussels, Belgium RY
i\: PHONE: +32 2 235 7769
Ly * Donn Milton VRDXHQ!DRM1@SEISMO %
. Verdix Corporation
? 7655 0ld Springhouse Road N
b McLean, VA 22102 o
. (703) 448-1980 =
>
*# Warren Monroe , WMONROE@RECLA LA
: Hughes Aircraft Co. !
e P.0. Box 3310 -
) FU-618/Q315 o
5 Fullerton, CA 92634 o
N (714) 732-2887 b
. Mark Moriconi MORICONI@SRI-CSL N
A% SRI International A
-3 Computer Science Laboratory
", 333 Ravenswood Avenue - =3
~ Menlo Park, CA 94025 o
(415) 859-5364
* LCDR Philip A. Myers MYERS@NRL~CSR :
- Space and Naval Warfare Sys. Command *
N SPAWAR 8141A )
W Washington, DC 20363-5001 =
(202) 692-8484 -
AN * Karl Nyberg NYBERG@ECLB
ﬁ Verdix Corporation
g 7655 01d Springhouse Road
m‘ McLean, VA 22102 <
(703) 448-1980 ii
2
2
3 v
o -
¢
n
? -
-"-"’-.‘. “u ey 7. N T e N e Rt P JIL v R L I NS T O T L AL e g

T e T I e R W N VR W “ .t -
MRSA L QSRR DRI IRN tos S et e



ﬂ * Myron Obaranec LAKSHMIGCECOM-1
, U. S. Army, CECOM

g: Fort Monmouth, NJ 07703

Py ATTN: AMSEL-TCS-SIO

(201) 544-4962

! Frank J. Oles
Thomas J. Watson Research Center
. P.0O. Box 218
&j 88-K01 Route 134
) Yorktown Heights, NY 10598
(914) 945-2012

o~ Mahmoud Parsian
SDI Inc.
N P. 0. Box 4283
Falls Church, VA 22044

‘. Diana B. Parton DBP@MITRE-BEDFORD
-1 The MITRE Corporation.

’ Burlington Road

"Bedford, MA 01730

N (617) 271-7754

* Don Peters
oy Coum. Sec., Establishment
{ Dept. of Nat. Defence

101 Colonel By Drive
Ottawa K1A OK2 CANADA
i (613) 998-4519

* John Peterson PETERSON@TYCHO
» DoD Computer Security Center
N 9800 Savage Road

Ft. Meade, MD 20755

F (301) 859-6790
0:‘_"
* Joseph E. Pfauntsch, MS 29A JEP@QFORD-COS4
- Ford Aerospace & Comm. Corp.
-?.: 10440 State Highway 83

Colorado Springs, Colorado 80908
(303) 594-1326

> * Richard Platek RPLATEK@ECLB
Odyssey Research Assoclates
et 408 East State Street

Ithaca, NY 14850
(607) 277-2020

NRASEE §

s

ot
.:_
R
e

»
0

NASC R

.

|




LLROLT L

oo =
te

PP LSS

(Y
.

LA

AR

P B W A A

P GONCNENE N 2

ol
L]

Erhard Ploedereder
Tartan Labs

411 Melwood Avenue
Pittsburgh, PA 15213
(412) 621-2210

David Preston
IITRI

5100 Forbes Blvd.
Lanham, MD 20706
(301) 459-3711

Sri Rajeev

ATS&T Bell Laboratories
Room 1-342

190 River Road

Summit, NJ 07901

(201) 522-6330

William D. Ricker

The MITRE Corporation
M/S K229

Burlington Road
Bedford, MA 01730
(617) 271-3001

R. Max Robinson

Institute for Defense Analyses
Computer & Software Eng. Div,
Alexandria, VA 22311 °

(703) 845-2097

W. A. Robison

30 Charles Street West
Apt. i# 1811

Toronto, Ontario, CANADA
M4Y 1R5

(416) 925-0751

Clyde G. Roby

Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311

(703) 845-2541

Ken Rowe

DoD Computer Security Center
9800 Savage Road

Ft. Meade, MD 20755

N T T R " et et n AP AT AT R e ") T

\ ‘e "o e _"a “e . - - - »
<o Ve " 0 ® L SGOPC A ot Wl S W LR R
o "' "‘.' A I, \\‘ """“‘-,'m

e L

PLOEDEREDER@TARTAN

DPRESTON@ECLB

THNP4!ATTUNIX!RAJEEV@BERKELEY

WDR@MITRE-BEDFORD

RROBINSONQUSC~ECLB

CROBY@ECLB

------------------------

.........................

-

. - a-
P e Cat




L AL

2%

Ll
0y

-. .

I 12

va

wu.

VA

L I

John Rushby - EL393
Computer Science Laboratory
SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025

(415) 859-5456

Mark Saaltink

I. P. Sharp Associates

265 Carling Avenue

Suite 600

Ottawa, Ontario, Canada K1S 2El
(613) 236-9942

Marvin Schaefer

DoD Computer Security Center

9800 Savage Road

Fort Meade, MD 20755-6000

(301) 859-6880 or (301) 859~-6818

Mike Schwartz
Mailstop L0402
Martin-Marietta
Denver Aerospace
P. 0. Box 179
Denver, CO 80201
(303) 977-0421

Dev Sen

STC IDEC LIMITED

Technology Division

Six Hills House

London Road

Stevenage

Hertfordshire S61 1YB ENGLAND
PHONE: 011-44-438~726161

Jerry Shelton

Verdix Corporation

7655 01d Springhouse Road
McLean, VA 22102

(703) 448-1980

Brian Siritzky (212) 460-7239
Dept. of Computer Science

Courant Institue of Math. Sciences
New York University

251 Mercer Street

New York, NY 10012

...............

RUSHBY@SRI-CSL

SAALTINK@MIT-MULTICS

SCHAEFER@USC-ISI

UCBVAX!HPLABS{HAO! DENELCOR!

VRDXHQ! JHS@SEISMO

SIRITZKY@NYU-ACF2 or
oo e CMCL2!ACF2! SIRITZKY



r!xﬁxvuvxv:"1VT‘1W1-1‘:*xu"\ AN R LA S LA AL ALAE ALK A A LD LA RAFAL A S At s tat e L AL EA 2 Akt a's 24 o)
- " = - i .

Doug Weber RPLATEKQRECLB
Odyssey Research Associates

408 East State Street

Ithaca, NY 14850

(607) 277-2020

E R
*

Steve Welke SWELKE@ECLB
Institute for Defense Analyses

Computer & Software Eng. Div.

1801 N. Beauregard Street

Alexandria, VA 22311

(703) 845-2393

Cany

-
o

Col. William Whitaker WWHITAKER@ECLB
WIS/JPMO/ADT

7726 01d Springhouse Road

Washington, DC 20330-6600

(202) 285-5065

g
.
o e

)

* Jim Williams JGW@MITRE-BEDFORD
MITRE Corporation
Mailstop B332
Burlington Road
Bedford, MA 01730
(617) 271-2647

~

s Jim Wolfe JWOLFEQECLB
Institute for Defense Analyses

i Computer & Software Eng. Div.
1801 N. Beauregard Street

Alexandria, VA 22311

(703) 845-2109

Larry Yelowitz : KLY@FORD-WDL1
Ford Aerospace and Comm. Corp.
! Western Development Lab. Div,
s Mailstop X-20
3939 Fabian Way
. Palo Alto, CA 94303
=3 (415) 852-4198

¢, * Christine Youngblut CYOUNGBLUTRQECLB
N Advanced Software llethods, Inc.

=t 17021 Sioux Lane

. Gaithersburg, MD 20878

S (301) 948-1989

* Margie Zuk MMZ@MITRE-BEDFORD
o Mailstop B321, Bldg B
J MITRE Corporation
Burlington Road
Bedford, MA 01730
H (617) 271-7590

.!
.

NN

------
.....

. A A AP JRP FY WS A P P y L) NS WS T R R S A R R L S




..............

DISTRIBUTION LIST OF M-135

4-:1"
LAr

Bernard Abrams ABRAMS@USC-ECLB

Grumman Aerospace Corporation

v Mail Station 001-31T o
- Bethpage, NY 11714 g’f
N (516) 575-9487 N
- RSNy

Vol

"

Omar Ahmed

. Verdix Corporation

X 7655 01d Springhouse Road
McLean, VA 22102

(703) 448-1980

* Eric R. Anderson TRWRB! TRWSPP! ERA@BERKELEY
TRW DSG (R2/1134)

< One Space Park K

! Redondo Beach, CA 90278 o

(213) 535-5776 e

5 * Dr. Thomas C. Antognini SECURITY!TCA@MITRE-BEDFORD or
MITRE Corporation TCVB@MITRE-BEDFORD

) Mailstop B330

. Burlington Road

- Bedford, MA 01730
(617) 271-7294

Charles Applebaum CHAG@MITRE-BEDFORD

i

1058 Boyurgogne e

R Bowling Green, OH 43402 t:i
X (419) 352-0777 i
SRSy

Krzystof Apt ‘i.}

) Thomas J. Watson Research Center ey

- P. O. Box 218 e
88-KO1 Route 134 RN

b Yorktown Heights, NY 10598 ﬁt{
- (914) 945-2923 P
[ o

o Terry Arnold MERDAN@ISI "
[ Merdan Group AN
) P.0. Box 17098 RN

San Diego, CA 92117 -

Ted Baker

Department of Computer Science
w, Florida State University ety
X Tallahassee, FL 32306 KOS
(904) 644-2296 e

23

.."'.
[y
r S

-
Ky

DN
N
"oty
A
s s
-

P
s
y

Ty

.I'

¥

EN4

..............................
-------------------------
(PR

A‘( '/



o ol - - e
HAACLTEY e

a3

/ } ' "/. ‘,' ‘c‘ ‘.‘ N

DAL

4
W )

)

Sl

‘ l'-l. s

.
%

———
AR AL

)
(St

A RS

David Elliot Bell

Trusted Information Systems, Inc.
3060 Washington Road

Glenwood, MD 21738

(301) 854-5889

Dan Berry

3531G Boelter Hall

Computer Science Department
School of Eng. and Appl. Science
Los Angeles, CA 90024

(213) 825-2971

Edward K. Blum

Mathematics Department

University of Southern California
Los Angelos, CA 90089

(213) 743-2504

Alton L. Brintzenhof.
SYSCON Corporation
3990 Sherman Street
San Diego, CA 92110
(619) 296-0085

Dr. Dianne Britton

RCA Adv. Tech. Labs

ATL Building

Moorestown Corporate Center
Moorestown, NJ 08057

(609) 866-6654 or (609) 924-3253

Dr. R. Leonard Brown
M1/112

The Aerospace Corporation
P. 0. Box 92957

Los Angeles, CA 90009
(213) 615-4335

Richard Chan

Hughes Aircraft Co.
P. 0. Box 33
FU-618/P115
Fullerton, CA 92634
(714) 732-7659

Norman Cohen

SofTech, Inc.

705 Masons Mill Business Park
1800 Byberry Road

Huntingdon Valley, PA 19006
(215) 947-8880

DBELL@MIT-MULTICS

BLUM@ECLB

SCI-ADA@USC-ISI

HELBIG@ISI

BROWN@AEROSPACE

RCHAN@USC-ECL (bad)

NCOHENQRECLB

g
p

. :")
L iy

"

L

f".?f:

':l ;J';.)

b

v

o




Paul M. Cohen

Ada Joint Program Office
OUSDRE/R&AT

Pentagon Room 3D139 (Fern Street)
Washington, DC 20301-3081

(202) 694-0211

Richard M. Cohen

Institute for Computing Science
2100 Main Bldg.

University of Texas

Austin, Texas 78712

(512) 471-1901

Michael D. Colgate

Ford Aerospace & Comm. Corp.
10440 State Highway 83

Colorado Springs, Colorado 80908

Mark R. Cornwell

Code 7590

Naval Research Lab
Washington, D.C, 20375
(202) 767-3365

Major Terry Courtwright
WIS/JPMO/ADT

7726 01d Springhouse Road
Washington, DC 20330-6600
(202) 285-5056

Dan Craigen

c/o 1. P, Sharp Associates

265 Carling Avenue

Suite 600

Ottawa, Ontario, Canada K1S 2El
(613) 236-9942

Steve Crocker, M1-101

The Aerospace Corporation
P.0. Box 92957

L.os Angeles, CA 92957
(213) 648-6991

John J. Daly

USAISSAA

2461 Eisenhower Avenue
Alexandria, VA 22331-0700

el IR
n‘.!f.‘!ifﬁfhi‘)fuhﬁ':ﬁ.,L:..LMLJ«L;..}..'."

PCOHEN@ECLB

COHEN@UTEXAS-20

1
&

)
L)
e

FREEMAN@FORD-COS1 o
S

CORNWELL@NRL-CSS e
2

COURT@MITRE

CMP.CRAIGEN@UTEXAS-20

CROCKERGAEROSPACE

WCOXTON@USADHQ2 e
]
b‘x-
\\.n M o
e
"\ﬂ"‘\
NCSY
i\
A
LA
!
)




PP PEN

ONPEYN Y

e
. ’e

) A
. A A % e

O

v i)
PN A WY )

P
PR

o
a8

Tom Dee

Boeing Commercial Airplane Co.
P. 0. Box 3707

MS 77-21

Seattle, WA 98124

(206) 237-0194

Jeff Facemire

Texas Instruments
P.0O. Box 801

M/S 8007

2501 West University
McKianney, TX 75069
(214) 952-2137

John C. Faust
RADC/COTC

Griffiss AFB, NY 13441
(315) 330-3241

Gerry Fisher

IBM Research 35-162

P. 0. Box 218

Yorktown Heights, NY 10598
(914) 945-1677

Roy S. Freedman
Hazeltine Corporation
Greenlawn, NY 11740
(516) 261-7000

James W, Freeman

Ford Aerospace & Comm. Corp.
Mailstop 15A

10440 State Highway 83
Colorado Springs, CO 80908
(303) 594-1536

Mark Gerhardt
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7839

Chuck Gerson

Boeing Aerospace Co.
Mailstop 8H-56

P.0. Box 3999
Seattle, WA 98124

FACEMIREZTI-EGRCSNET-RELAY

FAUST@RADC-MULTICS

FREEDMANQ@ECLB

MSG@MITRE-BEDFORD

\!:

a
L)

/’




Helen Gill
MITRE
1 Mailstop W459
1820 Dolly Madison Boulevard
McLean, Virginia 22102
(703) 883-7980

‘~‘

. Kathleen A. Gilroy

Software Prod. Solutions, Inc.
P. O. Box 361697

Melbourne, FL 32936

Virgil Gligor ;:
Department of Electrical Engineering fﬂf
> University of Maryland gt
' College Park, Maryland 20742 '

(301) 454-8846

Donald I. Good GOODQRUTEXAS-20
- 2100 Main Building

The University of Texas at Austin
' Austin, TX 78712

B (512) 471-1901

i~ Ronald A. Gove GOVE@MIT-MULTICS ;
o Booz, Allen & Hamilton e
' 4330 East West Highway -
Bethesda, MD 20814
(301) 951-4624

Inara Gravitis GRAVITISQ@ECLB

% S3AIC

' 1710 Goodridge Drive N
McLean, VA 22202 y

(703) 734-4096 or (202) 697-3749

o * Col. Joseph S. Greene, Jr. JGREENE@USC-~ISI -~
_ DoD Computer Security Center’ R
-~ 9800 Savage Road o
L. Fort Meade, MD 20755-6000 e

(301) 859-6818

David Gries GRIES@CORNELL ::}
) Dept. of Computer Science o
. Cornell University &Q“
b4 Ithaca, NY 14853 5&;

(607) 256-4052

L PR IR ey M "M 2 " e R " " 2" n"m """ 2" | P .

A LS S

o, .,
X ..‘ - .- - - --. --.l‘- . Q: - ‘4.. - --. - .* .-t
" BN CHY alelad- Ty < ."l ... ‘

al




-

- a_A XA

Fdanre,

-
-

i) .‘- .‘.}‘r._ >

A

N0 | YA

e ay )

Pt
»

AR

Pl By %

Iy

P’

..- " {l

SRR

David Guaspari

Odyssey Research Associates
408 East State Street
Ithaca, NY 14850

(607) 277-2020

J. Daniel Halpern

SYTEK Corp.

1225 Charleston Road
Mountain View, CA 94043
(415) 966-7300

Kurt W. Hansen

Dansk Datamatik Center
LuudToftevej 1C

DK2800 Lyngby

Denmark

PHONE: ++ 45 2 872622

Scott Hansohn

Honeywell Secure Comp. Tech, Center
Suite 130

2855 Anthony Lane South

St. Anthony, MN 55418

(612) 379-6434

Larry Hatch

DoD Computer Security Center
9800 Savage Road

Fort leade, MD 20755-6000
(301) 859-6790

Linn Hatch

IBM

17100 Frederick Heights
Gaithersburg, MD 20879

Brian E. Holland

DoDCSC, C3

9800 Savage Road

Fort Meade, MD 20755-6000
(301) 859-6968

Ray Hookway

Dept. of Computer Eng. & Science
Case Institute of Technology
Case Western Reserve University
Cleveland, OH 44106

(216) 368-2800

DAL A4 - B - .

RPLATEKQECLB

SYTEK@SRI-UNIX or
MENLO70! SYTEK! DAN@GBERKELEY

KHANSEN@ECLB

HANSOHN@HI-MULTICS

HATCH@TYCHO

BRIAN@TYCHO

HOOKWAYZCASE@QCSNET-RELAY

<R

LN

- "J

v
Py
LYy

cetets
R
PR

toe &

¥ i

LA

;l'l

!




Paul Hubbard HOOKWAYZCASE@CSNET-RELAY ’_-.,
E Dept. of Computer Eng. & Science
Case Institute of Technology "
Case Western Reserve University 2
Cleveland, OH 44106 YA
} (216) 368-2800 o
Jim Huitema ’_-
F‘l‘ National Security Agency A
E R831 A
Ft. Meade, MD 20755 Lo £
Y (301) 859-6921 o
: o
Larry A. Johnson LJOHNSON@MIT-MULTICS
2 GTE i
E, 77 "A" Street S
Needham, MA 02194 s
(617) 449-2000 ext. 3248 :
e Sy
{' * Juern Juergens JJURGENS@ECLB _j-.::
SofTech, Inc. e
hg 460 Totten Pond Road o
Waltham, MA 02254 Pt
(617) 890-6900 ext., 316 20
e )
I{;'.: Matt Kaufmann CMP.BARCGUTEXAS-20 ]
' Burroughs Corp. S
Austin Research Center N
12201 Technology Blvd. Al
Austin, TX 78727 =
(512) 258-2495
ﬁﬁ Prof. Richard A. Kemmerer DICKQUCLA-CS e
Computer Science Department T
University of California pLN
Santa Barbara, CA 93106 3 ¥
(805) 961-4232 NN
' RSA
i-. John C. Knight UVACS! JCK@SEISMO N
e Department of Computer Science -
Thornton Hall Xy
[ University of Virginia N
E.:: Charlottesville, VA 22903 Ry
(804) 924-1030 e
E Major Al Kopp AKOPPRECLB :’N
Ada Joint Program Office .
OUSDRE/R&AT —
F Pentagon Room 3D139 (Fern Street) ‘J'::
e Washington, DC 20301-3081 A
(202) 694-0211 NN
Ny
\
(SN
N
3
sﬁ:.
':::'.'
‘-.\

e .\‘ . “Q';‘n.“- “-\'-:“ \‘ ’
ST O AN



P N NOSCNER

Tale e A AN

L R e N e

. Thomas M, Kraly
IBM Federal Systems Division
Software Eng. & Tech. 4D08
6600 Rockledge Drive
Bethesda, MD 20817
(.31) 493-1449

Dr. Jack Kramer

Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311

(703) 845-2263

Eduardo Krell

3804 Boelter Hall
UCLA

Los Angeles, CA 90024

Kathy Kucheravy

DoD Computer Security Center
9800 Savage Road

Ft. Meade, MD 20755

Dr. Kenneth Kung

Hughes Aircraft Company
Ground Systems Group

M. S. 618/Q315

P. 0. Box 3310
Fullerton, CA 92634
(714) 732-0262

* Carl Landwehr
Code 7593
Naval Research Laboratory
Washington, DC 20375-5000
(202) 767-3381

* Mike Lake
Institute for Defense Analyses
Computer & Software Eng. Div,.
1801 N. Beauregard Division
Alexandria, VA 22311
(703) 845-2519

Randall E. Leonard

Army Sys. Software Support Command
ATTN: ASB-QAA

Fort Belvoir, VA 22060

S T AOPA PTG NN

NIGNILNERALN MRS

Ly NI

KRAMER@ECLB

KKUNG@USC-ECLA

LANDWEHR@NRL-CSS

MLAKE@RECLB

....

.'..ll-'l.‘

2

"

[

4 4

Vlets

' é" ,"'_.

-
r

"‘t A
-

e,
A

.

.
o )
.
.
-
co



Nancy Leveson

ICS Department

University of California

Irvine, CA 92717

(714) 548-7525 or (714) 856-5517

Dr. Timothy E. Lindquist
Computer Science Department
Arizona State University
Tempe, AZ 85287

(602) 965-2783

Steven Litvintchouk
Mail Stop ALl80T
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7753

David Luckham

Stanford University

Computer Systems Lab, ERL 456
Stanford, CA 94305

(415) 497-1242

Dr. Glenn MacEwen

Computing and Information Science
Goodwin Hall

Queens University

Kingston, Ontario

K7L 3N6

(613) 547-2915 or (613) 548-4355

Ann Marmor-Squires

TRW

Defense Systems Group
2751 Prosperity Avenue
Fairfax, VA 22031
(703) 876-8170

Eric Marshall

System Development Corporation
P.0. Box 517

Paoli, PA 19301

(215) 648-7223

Adrian R. D. Mathias
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850

(607) 277-2020

LINDQUISZASU.CSNET@CSNET-RELAY

SDLE@MITRE~BEDFORD

LUCKHAM@SAIL

MARMOR@ISI

PAYTON@BBNG

RPLATEKGECLB

l". -~
e %

NSRS
'l’”

»
r

SN 7
‘v e A e
]

* .
8.
St
Yy




Y

»

4

Yt i ]

&«

2 D
- :':‘.I‘A.).J.'

¥

.I.‘ ‘. » ,l

' F%‘-‘.ﬁ\_’n'c

AN \\.‘;\.‘b.

)
1

i

Terry Mayfield TMAYFIELD@ECLB
Institute for Defense Analyses

Computer & Software Division

1801 N. Beauregard Street

Alexandria, VA 22311

(703) 845-2479

John McHugh MCHUGHQ@UTEXAS-20
Research Triangle Institute

Box 12194

Research Triangle Park, NC 27709

(919) 541-7327

Rudolf W, Meijer RMEIJERQUSC-ECLB
Commission of the European Communities

Info. Tech. and Telecomm. Task Force

A25 9/6A

Rue de la Loi 200

B-1049 Brussels, Belgium

PHONE: +32 2 235 7769

Donn Milton VRDXHQ!DRM1I@SEISMO
Verdix Corporation

7655 01d Springhouse Road

McLean, VA 22102

(703) 448-1980

Warren Monroe WMONROE@ECLA
Hughes Aircraft Co.

P.0. Box 3310

FU-618/Q315

Fullerton, CA 92634

(714) 732-2887

Mark Moriconi MORICONI@SRI-CSL
SRI International

Computer Science Laboratory

333 Ravenswood Avenue

Menlo Park, CA 94025

(415) 859-5364

LCDR Philip A. Myers MYERS@NRL-CSR
Space and Naval Warfare Sys, Command

SPAWAR 8141A

Washington, DC 20363-5001

(202) 692-8484

Karl Nyberg NYBERGQ@ECLB
Verdix Corporation

7655 01ld Springhouse Road

McLean, VA 22102

(703) 448-1980

s

B
e WA

]




L »
oo
o v

* Myron Obaranec LAKSHMI@CECOM~-1 g

E- U. S. Army, CECOM i
- Fort Monmouth, NJ 07703 0%
ATTN: AMSEL-TCS-SIO g

(201) 544-4962 oy

Frank J. Oles
Thomas J. Watson Research Center %,
P.0. Box 218

oy

88-K01 Route 134 W,
Yorktown Heights, NY 10598 s
F (914) 945-2012 :‘;
2
Mahmoud Parsian e
. SDI Inc. B
E; P. O. Box 4283 ¥
' Falls Church, VA 22044 :
- Diana B. Parton DBP@MITRE-BEDFORD o
b The MITRE Corporation s
Burlington Road 2*
N Bedford, MA 01730 )
k (617) 271-7754 (]
c"r“
- * Don Peters Iy
e Comm. Sec. Establishment RN,
e Dept. of Nat. Defence D!
101 Colonel By Drive ;}
" Ottawa K1A OK2 CANADA B,
‘ (613) 998-4519 <
[}
»» * John Peterson PETERSON@TYCHO X
:f DoD Computer Security Center AN
T 9800 Savage Road b{
Ft. Meade, MD 20755 ;
. (301) 859-6790 ~
<. ~ N
* Joseph E. Pfauntsch, MS 29A JEP@FORD-COS4 AN
b Ford Aerospace & Comm. Corp. -t
o 10440 State Highway 83 i
' Colorado Springs, Colorado 80908 cia
: (303) 594-1326 -
g N
*- % Richard Platek RPLATEK@ECLB D
) Odyssey Research Associates NN
o 408 Zast State Street =
o Ithaca, NY 14850 L
(607) 277-2020
o :S
>
N
NS
y N
S
B \S\
s NN
A >
~
! PR
!':‘-'

AR A S R IR o G R AP UL S P LT I R N U T IRU IS L g IR I ) AR TR TP AP SL TN
0 {.{ ....‘.f"' AN qbr)'_\."ﬁ'.\.. (-..c. .t Pl "’!.. - RO PRI AERCREREN ]\ :v‘_ “» : L% -r-#- A

SRIERE LI
v e e T




.I-

Ay
-

F Oy e uy

.

PR v P

- N )
S RIS LT

Mk

ey 42 %

ARSI

¥
e Y

I

QAL
-
« ‘s " "

2

_" _‘l ."

o
e

\ "6 - o -

» -
-

RS A SN

»
e

\u.,‘<\.._ Yy o
AL W S tomi o d

Erhard Ploedereder
Tartan Labs

411 Melwood Avenue
Pittsburgh, PA 15213
(412) 621-2210

David Preston
IITRI

5100 Forbes Blvd.
Lanham, MD 20706
(301) 459-3711

Sri Rajeev

AT&T Bell Laboratories
Room 1-342

190 River Road

Summit, NJ 07901

(201) 522-6330

William D, Ricker

The MITRE Corporation
M/S K229

Burlington Road
Bedford, MA 01730
(617) 271-3001

R. Max Robinson

Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311

(703) 845-2097

W. A. Robison

30 Charles Street West
Apt. # 1811

Toronto, Ontario, CANADA
M4Y 1R5

(416) 925-0751

Clyde G. Roby

Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311

(703) 845-2541

Ken Rowe

DoD Computer Security Center
9800 Savage Road

Ft. Meade, MD 20755

v, vt e
.....

“n e e e T e
g ."."."-:l',q"-.l -’
L8 e a"a'm.. i ™ )

PLOEDEREDER@TARTAN

DPRESTON@ECLB

IHNP4!ATTUNIX!RAJEEV@BERKELEY

WDR@MITRE~-BEDFORD

RROBINSON@USC-ECLB

CROBY@ECLB

-._“\"'

AT

[ R

y
T,

..
r

&

=

»

93




33
John Rushby - EL393 RUSHBY@SRI-CSL ‘ ‘Q
Computer Science Laboratory .
SRI International %5.
333 Ravenswood Avenue Q@ﬂ
Menlo Park, CA 94025 S
. (415) 859-5456 R¥Cy
KLY
. * Mark Saaltink SAALTINK@MIT-MULTICS ;2:52
N I. P. Sharp Associates i,::
- 265 Carling Avenue S
Suite 600 h
3 Ottawa, Ontario, Canada K1S 2El GOSN
" (613) 236-9942 Z(ﬁ
- Marvin Schaefer SCHAEFER@QUSC-ISI )
W DoD Computer Security Center SO
9800 Savage Road >
. Fort Meade, MD 20755-6000 ey
- (301) 859-6880 or (301) 859-68138 -};
* Mike Schwartz UCBVAX!HPLABS! HAO! DENELCOR! i::
; Mailstop L0402 }ﬂ:
hs Martin-Marietta e
Denver Aerospace P
. P. 0. Box 179 .
. Denver, CO 80201 SO
(303) 977-0421 SO
- Dev Sen L
STC IDEC LIMITED SRR
Technology Division N
o Six Hills House i
- London Road fﬁf
) Stevenage R
Hertfordshire S61 1YB ENGLAND =
PHONE: 011-44-438-726161 s
G
% Jerry Shelton ' VRDXHQ! JHS@SEISMO i
- Verdix Corporation @sﬁ
J 7655 0l1ld Springhouse Road }ﬁa‘
McLean, VA 22102 Ale
F\ (703) 448-1980 Y
3 AR
* Brian Siritzky (212) 460~7239 SIRITZKY@NYU-ACF2 or (Qi
" Dept. of Computer Science «..CMCL2!ACF2!SIRITZKY s
W Courant Institue of Math. Sciences Bﬁko
New York University
251 Mercer Street
. New York, NY 10012 Y
' N
N LN
Y
.:.*‘.::‘
ey

v m o rama eyt . Nt mae gt e . e e e A M A AN A L et
..?’.'4'-.(."\’:-.’._1'-" o - e N e Sty IS P ..-‘." “\.\ N

-
gy




u
N
t * Roger Smeaton SMEATON@NOSC-TECR .. s,
{ NOSC, Code 423 N
San Diego, CA 92152 Y
(619) 225-2083 "
[
Michael Smith MKSMITHQ@QUTEXAS e, .
ICSCA ‘
2100 Main Building A
University of Texas ' r:; A
Austin, TX 78712
(512) 471-1901 =
* Ryan Stansifer RPLATEK@GECLB SN
Odyssey Research Associates o
408 East State Street .
{ Ithaca, NY 14850 o
(607) 277-2020
* David Sutherland RPLATEK@ECLB R
b Odyssey Research Associates : B
! 408 East State Street L
Ithaca, NY 14850 AR
(607) 277-2020 - i}
e
Steve Sutkowski INCOQUSC-ISID e
Inco Inc. DA
8260 Greensboro Drive -
McLean, VA 22102 o
(703) 883-4933 ]
] X
Michael Thompson .0
Astronautics Corporation of America N
P. 0. Box 523 -~ 3
Milwaukee, Wisconsin 53201-0523 %
(414) 447-8200 n B
* Friedrich von Henke VONHENKE@SRI-CSL B
SRI International PO
Computer Science Laboratory
333 Ravenswood Avenue =
Menlo Park, CA 94025 .
(415) 859-2560 EDRS,
Barry Watson WATSON@ECLB -
Ada Information Clearinghouse ::'
IITRI X
Room 3D139 (1211 Fern St., C-107) -
The Pentagon S
Washington, DC 20301 AN
(703) 685-1477 RN
-
o
N
e
3
n
'.'- .‘-
N

-.‘.._‘ DU $~'._ '\:'.. a0t S S -_'; ~.._"..'_"._-,._'f _:...- TN T ..,'l " ._".._‘ Nt ..; DRI \-',.-‘\- .' AN ‘...‘.. " ..-\ .\-‘\




Doug Weber

Odyssey Research Associates
408 East State Street
Ithaca, NY 14850

(607) 277-2020

Steve Welke

Institute for Defense Analyses
Computer & Software Eng. Div.
1801 N. Beauregard Street
Alexandria, VA 22311

(703) 845-2393

Col. William Whitaker
WIS/ JPMO/ADT

7726 01ld Springhouse Road
Washington, DC 20330-6600
(202) 285-5065

Jim Williams
MITRE Corporation
Mailstop B332
Burlington Road
Bedford, MA 01730
(617) 271-2647

Jim Wolfe

Institute for Defense Analyses
Computer & Software Eng. Div.
1801 N, Beauregard Street
Alexandria, VA 22311

(703) 845-2109

Larry Yelowitz

Ford Aerospace and Comm. Corp.
Western Development Lab. Div.
Mailstop X-20

3939 Fabian Way

Palo Alto, CA 94303

(415) 852-4198

Christine Youngblut

Advanced Software lethods, Inc.
17021 Sioux Lane

Gaithersburg, MD 20878

(301) 948-1989

Margie Zuk

Mailstop B321, Bldg B
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7590

RPLATEK@ECLB

SWELKER@ECLB

WWHITAKERQ@ECLB

JGWEMITRE-BEDFORD

JWOLFEGECLB

KLY@FORD-WDL1

CYOUNGBLUTQECLB

MMZ@MITRE-BEDFORD

“a

._:%:ﬁ.

A
" \.:
&

2 5
s

A J "‘ "
V' d 2
r S

s



]
y M.
b
- b e )‘/‘ Rl R
2. oy

Prr ISR RAS o o 1y %5 " 5N AN e YT Dy s ‘.uvn.H.A MO J. |




